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d Proteomes were recorded for 4,699 non-essential gene

deletions in S. cerevisiae

d Proteomic responses reflect general protein properties and

functional relationships

d Protein abundance changes depend on turnover,

complexes, growth, and genome structure

d Functional proteomics reveals gene function in four

complementary strategies
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In brief

By combining functional genomics with

proteomics, molecular phenotypes in the

yeast Saccharomyces cerevisiae can be

assigned at genome scale, and systems-

level insights reveal principles of how

gene function relates to protein

expression.
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SUMMARY
Functional genomic strategies have become fundamental for annotating gene function and regulatory net-
works. Here, we combined functional genomics with proteomics by quantifying protein abundances in a
genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass
spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological
properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and
genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic,
metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements
current gene annotation strategies through the assessment of proteome profile similarity, protein covariation,
and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and
provides a genome-spanning resource for functional annotation.
INTRODUCTION

Understanding how genotype leads to phenotype is crucial for

molecular biology, biotechnology, synthetic biology, and preci-

sion medicine. Predicting the phenotype of a mutant requires

knowledge of protein network responses and functions.1–3 How-

ever, many proteins still lack functional annotation.4

Functional genomics, aided by genome editing, has

become an essential tool for studying protein function and

genetic perturbations. The S. cerevisiae knockout (KO)

strain collection pioneered functional genomic experiments,5,6

enabling the study of genetic and chemical interactions, drug

resistance, and their impact on genome and phenome.7–13

Integrating systematic gene deletion, transcriptomics, and

metabolomics has enabled the characterization of unknown

genes using guilt-by-association approaches, providing func-

tional information based on molecular relationships between

the gene deletion mutants.14,15
2018 Cell 186, 2018–2034, April 27, 2023 ª 2023 The Author(s). Publ
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The impact of systematic genetic perturbations on the prote-

ome remains less well understood. Until recently, it was chal-

lenging to apply proteome technologies at a genome-wide scale.

However, proteomes were measured for specific strain collec-

tions, such as those focused on mitochondrial function,16 deubi-

quitinating enzymes,17 kinases,18,19 or metabolic enzymes.20

Recent proteomic developments, including robust chromato-

graphic regimes, streamlined sample preparation strategies, and

data-independent acquisition,21–31 allow for determining the pro-

teome of thousands of samples with high precision and minimal

missing values. Such methods have been recently applied for

the consistent quantification of almost 1,000 proteins in more

than3,000 geneKOs inSchizosaccharomyces pombe32 and char-

acterization of the yeast isolates of the 1,011 genomes project.27

To understand the proteomic landscape of genome-wide

genetic perturbations, we measured quantitative proteomes

for a genome-spanning collection of non-essential gene dele-

tions in Saccharomyces cerevisiae. We thus created a large,
ished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Quantitative proteomes for the genome-scale yeast gene-deletion collection

(A) Experimental setup (STAR Methods).

(B) Protein identification numbers as mean per sample (2,520), identified in 10% of the samples (3,205), identified in 50% of the samples (2,445), identified in 80%

of the samples (2,036), and identified in 80% of theWT samples with CV <50% (filtered dataset as described in STARMethods) (1,850). All values were calculated

for samples that passed the quality control (QC) thresholds.

(C) The filtered quantitative data are shown as a heatmap with 1,850 unique proteins measured across the 4,699 KOs, containing 8,693,150 protein quantities.

(D) The coefficients of variation (CVs; in%) were calculated for each protein and are shown for pooled yeast digest samples (QC, n = 389), whole-process control

samples (WT, n = 388), and KO samples (KO, n = 4,699). Median CV values are 8.1% across the technical replicates of a pooled digest, 11.3% across the

biological replicates of the wild-type strain, and 16.2% across the KO library. CVs were calculated on the filtered dataset and are shown from 0% to 70% (see

Figure S1B for all data points).
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systematic, and quantitative proteomic dataset, with an average

of 2,520 proteins quantified across 4,699 yeast gene KO strains.

The proteome profiles (PPs) comprise over 100 million peptide

quantitations and 9 million protein quantitations. These link

deleted genes to proteins and provide a genome-scale resource

of molecular phenotypes for 79% of the coding yeast genome.

We derive general principles that govern protein expression

from the data and demonstrate how functional proteomics

reveals gene function.

RESULTS

Quantitative proteomes for gene KOs at a genome-
wide scale
We grew a prototrophic derivative of the yeast gene deletion

collection in a synthetic minimal (SM) medium without amino

acid and nucleobase supplementation, extracted proteins,

and measured the proteomes with an adapted microflow-

SWATH-MS approach (Figure 1A; STAR Methods).
The average number of quantified precursors per sample was

20,859, resulting in the average quantification of 2,520 proteins

per sample. In total, 3,205 proteins were measured in at least

10% of the samples (Figure 1B). We applied stringent filtering

and obtained a map of consistently quantified proteins. This

map contains more than 100 million peptide quantities mapped

to 8,693,150 protein quantities, providing information on 1,850

unique proteins across the 4,699 measured KOs (Figure 1C;

STAR Methods).

In this filtered dataset, the median protein coefficient of

variation (CV) was 8.1% for pooled digests (n = 389; reflecting

technical variation) and 11.3% for the WT replicates (n = 388;

reflecting both technical and biological variation). This variation

of our workflow was lower than the biological responses in the

KOs, indicated by higher average CV values (16.2% for KOs)

(Figures 1D and S1B).

We conducted several analyses to ensure the quality of

our dataset. First, we compared the average of the

intensities with absolute protein copy numbers obtained by
Cell 186, 2018–2034, April 27, 2023 2019
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Figure 2. The proteomic response to systematic gene deletion

(A) Fraction of gene deletion strains (n = 4,699) in which proteins are differentially expressed (STAR Methods).

(B) Distribution of proteomic responses, given as the number of differentially expressed proteins (DE; Benjamini-Hochberg (BH)-adjusted p value < 0.01).

(C) Increased and decreased abundance of each protein across the 4,699 KO strains are given as dots and as histograms.

(D) Differentially expressed proteins upon gene deletions were compared with physical, genetic, or functional interactions, collected as part of the YeastNet

resource (v3).34

(E) Differential abundance of proteins is related to their distance to the deleted gene in the indicated network. Differentially abundant proteins of distance i were

normalized to the total number of proteins of distance i within the respective network. A significant enrichment (hypergeometric test, p value < 0.01) is indicated

by color.

(F) Percentage of paralogs from whole-genome duplications (ohnologs)35 that have increased or decreased abundance (BH-adjusted p value < 0.01) after the

deletion of one of the paralog partners (yellow). The number of increased or decreased proteins across all KOs is shown as a gray bar for reference.

(G) Spearman correlation coefficients are shown for ohnologs35 (n = 107 pairs) and for all other protein pairs (n = 1,710,215). The median correlation coefficients

are 0.19 and 0.01 for paralogs and other pairs, respectively (Wilcoxon signed-rank test; ****p value % 0.0001). (H) paralogs were classified as compensatory

enzymes (backup); enzymes duplicated to increase gene dosage36; or protein components of the ribosome (according to the GO term ‘‘structural constituent of

(legend continued on next page)
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stable-isotope-labeling33 and obtained a strong correlation (r =

0.75; Figure S1C). Next, we used the proteomes to validate the

yeast KO collection.5,15 In 91% of the 960 strains in which the

deleted gene was also among the proteins quantified, the bona

fide deleted gene product was not detected (87%) or was at

significantly reduced levels (4%). Of the remaining strains, 37

(4%) had a PP similar to WT strains. In 44 strains, we detected

the supposedly deleted gene at wild-type levels, although

the proteome differed from the wild-type strain, suggesting

that unknown mutations may cause these observed

phenotypes (Figures S1D–S1F).

Protein abundance changes across genome-wide
genetic perturbations
Next, we addressed the relationship between protein function

and protein abundance changes. We applied linear modeling

and empirical Bayes to identify proteins that were differentially

expressed (STAR Methods). Based on the repeated measure-

ments of the wild-type proteome, we estimated that our analysis

detects 55% of the proteins that are changed 1.5-fold and 84%

of the proteins that are changed 2-fold (Figures S1G–S1I).

More than 10 proteins were differentially expressed in 64% of

the strains, more than 20 in 43%, and more than 50 in 25%

(Figures 2A and 2B). The strongest response was detected in

sch9D with 872 of the 1,850 quantified proteins being differen-

tially abundant.

Next, we estimated the impact of the genetic background.

We recreated a subset of the KOs in auxotrophic strains used

in the synthetic genetic array (SGA) analysis38 (STAR Methods).

For many KO strains, we found similar protein responses; how-

ever, some of the proteome profiles diverged. For instance,

Spearman correlation coefficients ranged from r = 0.72 for the

dep1D deletion strains to r = �0.19 for the paf1D deletion strain

proteomes (Figures S1J–S1L).

Differential protein expression associated with protein
properties and function
Our dataset reveals details about the general nature of differen-

tial protein expression. For instance, we report that an individual

protein is more often decreased (on average in 1.2% of all KOs)

than increased (on average in 0.5% of all KOs). Moreover,

individual proteins change predominantly in one direction (Fig-

ure 2C). For example, Tsl1 or Tps2, both subunits of the treha-

lose-6-P synthase, are downregulated in >300 KOs while being

increased in only a few strains (Figure S2A). On the other hand,

the tRNA synthetases Krs1, Hts1, and Frs1 are primarily

increased (Figure S2A).

Next, we aimed to define principal pathways and mechanisms

that explained differential protein abundance. We started with a

comparison of our data with physical and functional interactions

among genes, as annotated in the YeastNet database.34 We

found that about 8.7% of differential protein expression affects
ribosome37’’), and compared with measured paralogs not categorized accordin

Student’s t test).

(I) Correlation coefficients are based on Spearman rank coefficients and compar

****p value % 0.0001; Student’s t test).

See also Figure S2.
proteins that are directly connected to the deleted gene in these

networks (Figure 2D), which represents a significant enrichment

(Figure 2E). For example, 2.5% of the differentially expressed

proteins are connected with the knocked-out gene in a transcrip-

tional co-expression network or 2.4% in a high-throughput pro-

tein-protein interaction network (Figure 2D). In some instances,

secondary interactions were also significantly enriched, but

3rd-order interactions were not (Figure 2E). Physical and func-

tional interactions are thus important to explain differential

protein expression. Equally, this result also shows that the major

fraction of differential protein expression is not explained by the

neighborhood of a gene in the functional networks as they are

mapped to date.

Another cause of protein abundance changes is func-

tional complementation. We thus investigated the interdepen-

dency of paralogs that arose by whole-genome duplication (oh-

nologs).35 In 2.2% and 5.9% of the cases where a paralog was

deleted, the other paralog was decreased or increased in abun-

dance, respectively, which is significantly more than the average

non-paralog gene pair (p < 0.05; hypergeometric test) (Figure 2F;

Table S3). Furthermore, many paralogs have a high level of pro-

tein correlation, with 21% having a correlation coefficient

(Spearman) larger than 0.5 (Figure 2G). Ribosomal paralogs

were particularly interdependent (Figure 2H) and covaried

(Figure 2I).

The analysis of metabolic enzymes allowed us to substantiate

this picture. We compared our data with a classification of pa-

ralog enzymes derived from a genome-scale metabolic network

analysis.36 We found that paralog enzymes that were classified

as having a backup function were significantly increased in

abundance on the deletion of the paralog (Figure 2H). On the

other hand, paralogs that were classified as high dosage (dupli-

cated enzymes could increase activity and fluxes36) have signif-

icantly lower correlation coefficients compared to measured pa-

ralogs that were not categorized (p = 0.041) (Figure 2I).

Mapping a complex relationship of growth rate,
proteomic changes, and genome versatility
Hence, only a moderate proportion of the overall differential pro-

tein abundances was explained by the known functional associ-

ations or protein orthology. This could simply mean that the

current functional networks (Figure 2D) are incompletely

described; this result could however also indicate that most

abundance changes are driven by other factors. For example,

although the KO strain for ARG81, a transcription factor that

represses arginine anabolism,39 specifically affects proteins

involved in arginine metabolism (i.e., Arg8, Arg3, Arg5, Arg56,

and Arg1; Figure S2C), other PPs indicate more general pertur-

bations. For instance, the KO of RPS27B, encoding for a protein

of the small ribosomal subunit (40S), affects the abundance of

91 proteins. A subset of these are functionally related to

Rps27b, but in addition, other proteins appear differentially
g to these groups (‘‘other paralogs’’) (**p value % 0.01; ****p value % 0.0001,

ed to measured paralogs not categorized (‘‘other paralogs’’) (*p value % 0.05;

Cell 186, 2018–2034, April 27, 2023 2021
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Figure 3. The effect of growth and chromosomal copy-number variations (aneuploidies) on the proteome

(A) Numbers of differentially expressed proteins in slow-growing KO strains (n = 748) and normal growers (n = 3,930). ****p value % 0.0001 (Wilcoxon signed-

rank test).

(B) The proteome dispersion within slow-growing strains is compared with the dispersion within normal-growing strains and is given as protein coefficients of

variations (in %). The CV values are shown for CV < 100%.

(legend continued on next page)
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expressed due to Rps27b’s role in the translation itself (Fig-

ure S2C). Indeed, KOs of genes that directly or indirectly perturb

translation or transcription by having Gene Ontology (GO)

annotations such as ‘‘ribosomal small subunit progenesis,’’

‘‘transcription from RNA polymerase I promotor,’’ or ‘‘DNA-

templated transcription, termination’’ generally induce broad

proteome changeswith a high number of differentially expressed

proteins (Figure S2D).

Furthermore, the growth rate is known to affect gene expres-

sion. In agreement with previous studies,14,40–46 we find that

slow-growing strains have a high number of differentially ex-

pressed proteins (Figures 3A and 3B). Indeed, the proteome

was predictive of growth rates using a random forest (RF) model

(R2 = 0.68, Figure S3A; STAR Methods). Furthermore, the group

of slow-growing strains with broad PPs is dominated by KOs of

ribosomal subunits, indicating that the impact on transcription

and translation overlaps with the impact of growth rate on the

proteome (Figures S2D and S3B).

Conversely, our data also revealed that growth-rate-associ-

ated proteins explain only a fraction of differential protein

expression in slow-growing strains (Figures 3C and S3C).

We realized that one source of divergent profiles is aberrant

chromosome numbers (aneuploidies). Aneuploidies cause

broad expression changes since all proteins encoded on an

aneuploid chromosome are affected.47–49 At least in the

strain background used herein, aneuploidies are transmitted

to transcriptome and proteome with a minimum amount of

gene-dosage buffering, rendering aneuploidies discoverable by

proteomics.27,47,50,51 Sorting protein expression values accord-

ing to chromosomal localization identified 92 strains with a PP

that corresponded to a chromosomal aneuploidy (Figure 3D).

For instance, the proteome of the deletion strain for the cell-cycle

protein kinase gene DBF2 reveals duplicated gene doses for

proteins encoded on chromosome VIII (Figure 3E). Segmental

aneuploidies or short structural aneuploidies were detected for

a further 18 strains, often in conjunction with whole-chromo-

some aneuploidies (Figure 3D). For instance, the deletion strain

of the spindle pole body component KRE28 carries whole-chro-

mosome aneuploidies on chromosomes II and VIII, as well as a

segmental aneuploidy on chromosome VII (Figure 3F). We

observed all chromosomes except for VI and VII to be aneuploid

at least once. Chromosomes IX, VIII, V, and I were aneuploid

most frequently (Figure S3D). Aneuploidies on chromosomes

VI and VII might be detrimental, and indeed, Chr VI aneuploidy

was previously reported to be lethal due to a-tubulin (TUB2)

being encoded on that chromosome.52

Our dataset indicates that aneuploidy is a cause of broad

proteomic responses in slow-growing strains. As in laboratory-
(C) Correlation coefficients (Pearson correlation) are shown as histograms for all

(D) Median log2 protein abundance levels (normalized, see STAR Methods) are s

(E and F) Protein abundances, sorted by their chromosomal location, are shown

(G) The normalized growth rates are compared between euploid (n = 4,428, m

chromosomal aneuploidy strains (n = 84, median = 0.65) (Wilcoxon signed-rank

(H) The numbers of significantly changed proteins are compared between euplo

whole-chromosomal aneuploidy strains (n = 84, median = 208) (Wilcoxon signed

(I and J) Protein abundances, sorted by their chromosomal location, are shown

See also Figure S3.
engineered aneuploids,47,50 the aneuploids detected by our

approach had slow growth rates (Figure 3G). Furthermore, these

strains had broad PPs (Figure 3H). This result was robust

on excluding the proteins in the duplicated chromosomes

(Figures S3E and S3F).

We next asked whether there is a functional relationship be-

tween the deleted gene and the proteomic response in aneuploid

strains. Overall, aneuploid strains were enriched for gene dele-

tions in ribosomal proteins as well as proteins involved in the

cell cycle and transcription (Figure S3G). In agreement with tran-

scriptomics53 andwhole-genome resequencing,54 we found that

KOs of ribosomal subunits, often encoded by two near-identical

paralogs,54 show compensatory chromosomal duplications. In

our dataset, these explain 17 out of 18 aneuploidies found for

aneuploid ribosomal gene KOs. In many cases, the aneuploidy

results in an increased abundance of the paralog (Figure S3H).

For example, rpl16bD or rpl14aD cause aneuploidies of chromo-

somes IX and VIII, respectively, where their paralogs, Rpl16a and

Rpl14b, respectively, reside (Figures 3I and 3J). The expression

levels of Rpl16a and Rpl14b are increased by fold-changes of

2.15 (adjusted p value = 5.73 10�46) and 1.77 (adjusted p value =

2.6 3 10�6), respectively. Interestingly, the reciprocal KOs

(rpl16aD and rpl14bD) do not obtain aneuploidies. These situa-

tions might indicate divergence in a major and a minor paralog.

Indeed, the median intensities are higher in the aneuploidy-

inducing paralogs (936 normalized counts per peak [cpp]/2,325

cpp for Rpl16a/Rpl16b and 1,658 cpp/1,063 cpp for Rpl14a/

Rpl14b). A second contributing factor is that the frequency of an-

euploidies is not equal for all chromosomes.47 For instance,

Rpl14b and Rpl16a are encoded on chromosomes VIII and IX,

which are often aneuploid (in our dataset, in 17 and 14 strains,

respectively). Their paralogs instead are located on chromo-

somes XI and XIV, which are only duplicated in 9 strains and 1

strain, respectively (Figure S3D).

The effect of protein turnover and ribosome occupancy
on differential protein expression
We asked to what extent protein turnover and ribosome occu-

pancy are important variables in determining differential protein

expression. We used elastic net regression models55 and tested

whether the proteomes can predict ribosome occupancy and

protein half-life. Protein abundance values were used as predic-

tor variables, and the protein half-lives or ribosome occupancies

from reference datasets56,57 as response variables (see STAR

Methods). We obtained high predictability in a hold-out test set

(20%of proteins) and found that 60%of the variation in ribosome

occupancies is explained by the regression model (R2 � 60%)

(Figure 4A). Using the feature weights of themodel, we assessed
pairwise protein-abundance-growth correlations.

hown for each chromosome.

for dbf2D and kre28D, respectively (Manhattan plot).

edian = 0.97), segmental aneuploidy (n = 18, median = 0.90), and whole-

test; **p value % 0.01; ****p value % 0.0001).

id (n = 4,428, median = 16), segmental aneuploidy (n = 18, median = 74), and

-rank test; ****p value % 0.0001).

for rpl16bD and rpl14aD, respectively.

Cell 186, 2018–2034, April 27, 2023 2023
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Figure 4. The interdependency of differential protein expression with translation rate and turnover

(A) Ribosomal occupancies are predicted with an elastic net model. The model was trained on 80% of the proteins (n = 1,392) and applied on the remaining 20%

of the proteins (test set, n = 346). The plot shows only proteins from the test set. Ribosomal occupancies were taken from a reference dataset56 and

log10-transformed. The proteome data were log2 transformed, centered, and scaled.

(B) Gene Ontology (GO) slim term37 enrichment analysis of the top features selected by the model using a Fisher’s exact test (STAR Methods).

(C) Half-lives are predicted with an elastic net model. The model was trained on 80% of the proteins (n = 1,398) and applied on the remaining 20% of the

proteins (test set, n = 348). The plot only shows proteins from the test set. Half-lives were taken from a reference dataset57 and log10 transformed. The proteome

data were log2 transformed, centered, and scaled.

(D) The 15most important KO strains in the regression model for half-lives. The KO strains are ranked by importance and scaled to have amaximum value of 100.

(E) Abundance of ribosomal 60S subunit proteins in 10 KO strains that were selected as the most important feature for the prediction of protein half-life. Protein

intensities are centered and log2-transformed. Significance for the comparison to the WT abundance levels (two-sided t test) is shown with asterisks

(****p % 0.0001; ***p % 0.001; **p % 0.01; *p % 0.05; nsp > 0.05).

(F) Differential abundance of proteins with short (below median) and long (above median) half-lives (****p % 0.0001, Wilcoxon signed-rank test).

(G) Half-lives (in h, log10 transformed) are shown as boxplots for proteins that are predominantly decreased in abundance, increased in abundance, or change in

both directions across the KO strains. Directionality was defined as ratios of increased and decreased abundance changes being >75% and <25% quantile for

down and up, respectively. Significance (two-sided Wilcoxon signed-rank test with ‘‘no direction’’ as a reference) is shown with asterisks (****p value % 0.0001;

**p value % 0.01).

See also Figure S4.
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which gene deletions were most informative (Table S4). Pro-

cesses related to RNA levels or transcription (‘‘mRNA process-

ing,’’ ‘‘DNA-templated transcription,’’ ‘‘RNA splicing,’’ and ‘‘tran-

scription from RNA polymerase II promoter’’) or protein

degradation (‘‘proteolysis involved in cellular protein catabolic

process‘‘ and ‘‘protein modification by small protein conjuga-

tion’’) were enriched (Figure 4B).

Next, we tested for the predictability of protein half-life, as

obtained by metabolic labeling.57 As above, we constructed

models using elastic net regression (STAR Methods) and ob-

tained a high correlation of themeasured and predicted half-lives

in the hold-out set (Figure 4C). Here, the most informative gene

deletions included dur12D (urea amidolyase), sds24D (a protein

involved in cell separation), and fun30D (involved in chromatin

remodeling) (Figure 4D; Table S5). Indeed, many proteins with

short or long half-lives are differentially abundant in those strains
2024 Cell 186, 2018–2034, April 27, 2023
(e.g., in dur12D long-lived proteins are increased, whereas in

fun30D, long-lived proteins are decreased) (Figure S4A), indi-

cating a changed equilibrium between translation and degrada-

tion. Although neither growth rate nor cell size is the main driver

of those protein-half-life-dependent changes (Figure S4B), the

translation machinery is significantly affected in most of those

strains (Figure 4E).

Our results hence indicate that protein abundance, translation

rate, and turnover are interdependent and act together in deter-

mining differential protein expression. Unexpectedly, our data

revealed that proteins with a slow turnover (long half-life) are

more likely to be differentially expressed (Figure 4F) and tend

to be decreased in abundance (Figure 4G). For example,

Sds24, Hsp26, and Pgm2, which are among the most long-lived

proteins in yeast (half-lives > 130 h), are primarily downregulated

(Figure S4C). We speculate that proteins with faster turnover
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Figure 5. The response of protein complexes to genome-wide perturbation

(A) Scheme: the response of complex subunits to the deletion of one subunit.

(B) Fraction of complexes in which at least one deletion of a subunit induces a decrease (22%, green), increase (18%, orange), or in which some deletions induce

increase and others decrease (2%, purple) of subunit abundances. The total number of considered complexes is 51 (STAR Methods).

(C) Relative abundances of the coatomer complex subunits Cop1, Ret2, Ret3, Sec21, Sec26, and Sec27 are compared between sec28D and WT samples. Data

are centered and log2-transformed.

(D) Relative abundances of the glycine decarboxylase complex subunits Gcv1, Gcv2, Gcv3, and Lpd1 are shown for the KOs of the glycine decarboxylase

complex (gcv1D, gcv2D, gcv3D, and lpd1D) and WT samples.

(E) Relative glycine abundances in glycine decarboxylase KOs (gcv1D, gcv2D, and lpd1D) are shown, as derived from a reference dataset.15

(F) The relative protein abundances of proteasome complex subunits in the viable KOs of the proteasome complex—pre9D, rpn10D, and sem1D—comparedwith

their abundance levels in WT strains. Data are centered and log2-transformed.

(G) The relative protein abundances of all measured proteasome subunits in rpn4D are compared with their WT abundance levels. Significance (two-sided

Student’s t test with WT as a reference) is shown with asterisks (**** for p value % 0.0001; *** for p value % 0.001; % for p value % 0.01; * for p value % 0.05).
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rates are more easily buffered and may adapt better to genetic

perturbations. Conversely, proteins with high ribosome occu-

pancies are more likely to be differentially expressed (Fig-

ure S4D). Here, however, one needs to take some caution in

the interpretation of that result. In contrast to half-life (Fig-

ure S4E), ribosome occupancy correlates with abundance,58

and the differential expression of a high-abundant protein is

easier to detect.

Disruption of protein complexes can lead to accelerated
degradation of surplus subunits but can also lead to
their induction when feedback loops are involved
It is assumed that many complex subunits are produced in

super-stoichiometric amounts and that excess subunits (orphan

subunits) are degraded.49,51,59–61 As our dataset allowed us to

study the perturbation of all non-essential protein complex sub-

units in a single study, we asked to which degree complex sub-

units are degraded on the deletion of a subunit (Figure 5A). In

22% of the studied complexes, at least one of the KOs caused

a decrease in the other subunits (adjusted p value < 0.05, BH

for multiple testing correction62) (Figure 5B). For example, the

KO of the SEC28 gene, where the gene product has a stabilizing
function within the coatomer complex,63 decreases the abun-

dance of its interacting subunits (Figure 5C). Other examples of

subunits that lower the levels of interacting proteins are Paf1 in

the PAF1 complex or Atp17 in the mitochondrial proton-trans-

porting ATP synthase complex.

Notably, 18% of the studied complexes show an increased

abundance in response to the deletion of at least one subunit

(Figure 5B). In the search for an explanation, we noted com-

plexes that are regulated by a known transcriptional ormetabolic

feedback loop. For example, subunits of the glycine decarboxy-

lase complex, which regulates one-carbon metabolism via

methylene tetrahydrofolate,64 are increased when glycine levels

are high.65 Indeed, the deletion of a subunit of the glycine decar-

boxylase complex (gcv1D, gcv2D) increased glycine levels

(Figures 5D and 5E, re-processed data15). Another example is

the proteasome complex (Figure 5F), which is regulated by

the short-lived transcription factor Rpn4 via a negative feedback

loop to maintain proteasome levels under cellular stress.66–68

Indeed, although the deletion of subunits resulted in an

increased abundance of the other complex members, the dele-

tion of this transcription factor resulted in the downregulation of

the proteasome complex (Figure 5G).
Cell 186, 2018–2034, April 27, 2023 2025
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The impact of genetic perturbations on the functional
global proteome
To globally study the functional consequences of genetic

perturbations on the proteome, we grouped the gene-deletion

strains on a pathway-by-pathway basis using the KEGG

pathway annotation.69,70 Then, we characterized the proteomic

responses by gene-set analysis (Figure 6A). The analysis re-

vealed that the proteome captures global relationships between

perturbed and responding pathways. The most common re-

sponses to any genetic perturbation were enriched for meta-

bolism, with amino-acid and nucleotide metabolism being

among the most frequently responding gene sets (Figure 6A).

This result reflects that the metabolic network is the largest

interconnected biological system71 and known to be responsive

to the general physiological changes.15 For example, KOs

related to pyruvate metabolism show proteome responses in

various amino-acid metabolic and biosynthetic pathways (i.e.,

His, Arg, Pro, Lys, Phe, Tyr, Trp, Ala, Asp, Glu, Gly, Ser, and

Thr).We further found that perturbations of the peroxisome result

in differential abundance in lysine biosynthesis and lysine degra-

dation (Figure 6A), reflecting that lysine metabolism is connected

to peroxisome deficiency.72

Another interesting result indicated that perturbing RNA

degradation induces the proteasome (Figures 6A, S5A, and

S5B). An increase in RNA levels could hence be compensated

through more protein degradation. For example, mot2D or KOs

of the LSM complex subunits (lsm1D, lsm6D, and lsm7D) have

increased levels of the proteasome (Figure S5B).

Using functional proteomics to annotate gene function
Although 2,913 yeast genes are well annotated in the sense that

they reach the highest UniProt annotation score (5 of 5) and have

a median of 103 publications each, there are also 468 yeast

genes that have the lowest score (1 of 5) and are mentioned in

a median of only 4 publications (Figures S5C and S5D). We

report four successful and complementary strategies of anno-

tating proteins through functional proteomics, of which three
Figure 6. Annotating gene functions using functional proteomics
(A) Map connecting genetic perturbations to the corresponding proteome respo

toward affected pathways (STAR Methods). PPP, pentose phosphate pathway

carbon; PA, pantothenate; aa, aminoacyl; Pyr, pyruvate; amino acids indicated b

(B) The four functional annotation strategies supported by this dataset.

(C) The MAP1 gene exemplifies the complementary nature of these proteome an

proteome profile of the map1D strain and Map1 protein, respectively. Dashed l

changes (FC) measured in the map1D strain are similar to those in the nat3D stra

proteins are correlated across all strains (Spearman correlation = 0.51).

(D) Precision-recall analyses showing that profile similarities (PSs) and protein cov

ranked by the protein fold-change in the KO, showing that the extent of upregulatio

a relatively poor indicator of shared protein/KO function. Performance was asses

COMPLEAT protein complexes74 (right). Only responsive KOs were considered

(E) Functional maps created using uniform manifold approximation and projec

covariation (right). Subcellular compartment annotation shows that both approac

(F) Number of genes that could be associated with at least one GO term, KEGG

enrichment was performed on the differentially expressed proteins in each strai

pressed. For PS and PC, we considered the highest-scoring 1% of associations

(topology-weighted topGO analysis) or BH-adjusted p < 0.01 (KEGG/Reactome

(G) Functional annotations capture known interactions within the TCA cycle. The K

the annotation methods, 6 by two methods, and 6 by three.

See also Figure S5.
are specifically facilitated by the large-scale combination of

functional genomics and proteomics (Figure 6B): (1) interpreta-

tion of a KO strain’s PP, (2) interpretation of a protein’s response

across KOs (reverse proteome profile [RPP]), (3) a ‘‘guilt-by-as-

sociation’’ approach, grouping KOs with similar PPs together

(profile similarity [PS]), and (4) grouping proteins based on their

co-expression across KOs (protein covariation [PC]).

Associating KO strains by PS was previously successful

for annotating gene function using transcriptomics14 andmetab-

olomics.15 However, the scale of our proteomics dataset pre-

sented a challenge for this annotation strategy, as the distance

metrics struggle to calculate meaningful similarities in high-

dimensional data.75 We therefore devised a feature-selection

strategy, based on the observation that proteins that are infor-

mative for predicting growth rates are also informative for as-

sessing KO strain similarity. Selecting 185 (10%) proteins in

this manner and applying a topological overlap measure76 sub-

stantially improved the detection of functionally related genes

(Figures S6A–S6E; STAR Methods). We also observed that

PPs of 2,290 ‘‘responsive’’ KO strains (strains withmore differen-

tially expressed proteins than the median strain) could be

compared particularly well (Figure S6F). We therefore focused

our subsequent analysis of PPs on the responsive strains.

Feature selection also proved beneficial for PC analysis. For

this, we ranked KO strains by the number of differentially

expressed proteins. We found that selecting the 10% most

responsive KO strains (467 of 4,675) significantly improved the

PC analysis (Figures S6G–S6I).

Annotating methionine aminopeptidase 1 (Map1) illustrates

the complementary nature of the four approaches (Figure 6C).

Map1 co-translationally removes the N-terminal methionine

from nascent proteins. The PP of map1D reveals 205 differen-

tially abundant proteins, enriched for ribosomal proteins and

tRNA ligases (Figure 6Ci). By contrast, RPP revealed that the

Map1 protein is upregulated upon the deletion of ribosome

biogenesis factors rei1D and dbp7D and more generally in KOs

of RNA-binding proteins. Map1 protein levels are reduced in
nse. Genes are grouped by KEGG pathway,69,70 arrows point from perturbed

; metab., metabolism; biosyn., biosynthesis; degrdn, degradation; 1-C, one

y standard three-letter code.

notation strategies. (Ci and Cii) Volcano plots of proteome profile and reverse

ines indicate significant changes (adjusted p value < 0.01). (Ciii) Protein fold-

in (Spearman correlation = 0.38). (Civ) Abundance changes ofMap1 and Ded1

ariation (PC) capture gene function very well. In addition, protein-KO pairs were

n (PP/RPP [incr. abundance]) or downregulation (PP/RPP [decr. abundance]) is

sed using two gold standards for shared protein function, STRING73 (left) and

for profile similarity analysis. See STAR Methods for details.

tion (UMAP), grouping KO strains by profile similarity (left) and proteins by

hes capture subcellular organization.

pathway or Reactome pathway by over-representation analysis. For PPs, the

n and for RPPs the KOs in which the respective protein was differentially ex-

in the networks. Functional enrichment was considered significant for p < 0.01

Fisher’s exact test, STAR Methods).

EGG term ‘‘TCA cycle’’ was enriched in 22 TCA cycle genes by at least one of
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the sfp1D strain, a transcription factor that regulates ribosome

biogenesis gene expression, and upon the deletion of subunits

of the SAGA transcriptional coactivator complex (ada2D,

spt3D, and gnc5D) (Figure 6Cii). Third, clustering the profiles

by similarity revealed a close relationship between map1D and

nat3D. Indeed, Nat3 catalyzes the acetylation of N-terminal

methionines of nascent proteins (Figure 6Ciii). Finally, exploring

proteins with similar response patterns (PC) across KO strains

reveals that Map1 protein strongly correlates with the expression

of Ded1, an RNA helicase involved in translation initiation

(Figure 6Civ).

Next, we assessed the global performance of the annotation

strategies. We ranked KO-protein pairs by the fold-change and

subjected them to precision-recall (PR) analysis, using two

different gold standards as reference: functional associations

mapped by STRING73 and interactions between protein com-

plex subunits mapped by COMPLEAT.74 Although the extent

of upregulation of a protein is moderately indicative of a shared

function with the deleted gene, the extent of downregulation is

not (Figure 6D). We then tested how well KO-KO and protein-

protein similarity scores recapitulate the known interactions.

Both protein PSs and PC detect these associations well (Fig-

ure 6D). We visualized the overall gene-gene (or protein-protein)

associations using uniform manifold approximation and projec-

tion (UMAP) analysis.77 We created two maps in which similar

KOs (or proteins) are grouped together (Figure 6E). Although

our methods do not directly measure physical interactions,

grouping proteins by functional similarity means that both

maps partially reflect the subcellular organization of the cell

(Figure 6E).

In addition to these pairwise associations, we also tested

whether the groups of linked KOs or proteins were enriched for

biological function terms (Figure 6F; STAR Methods). We found

2,782, 678, and 349 PPs enriched for at least one GO term,

KEGG, or Reactome pathway, respectively (Figure 6F). The an-

notations are complementary as the strategies together anno-

tate more genes/proteins than each of the individual scores

alone. In total, 3,947, 1,474, and 1,238 genes/proteins could

be assigned at least one GO, KEGG, or Reactome term (Fig-

ure 6F). We then focused this analysis on the 1,086 most under-

studied yeast genes (Figures S5C and S5D) and found that 501

(of the 849 covered by our analysis) could be associated with

at least one functional term (Figure S5E).

To illustrate the combined power of our approaches, we in-

spected the interactions reported for the enzymes of a metabolic

pathway, the tricarboxylic acid (TCA) cycle. From the 33 PPs,

RPPs, PSs, and PCs of genes belonging to the corresponding

KEGG term,69,70 22 have significant enrichments of this term

(Figure 6G). For example, the pyruvate carboxylase (pyc1D)

that converts pyruvate to oxaloacetate has a similar profile

with pdb1D, aco2D, lpd1D, lat1D, and idh1D (Figure S5G). Inter-

estingly, the PC analysis highlights different associations and

found covariations of Pyc1 with Pyc2, Idp1, Idh2, and Cit2 (Fig-

ure S5G). Complementary associations for pyc1D were also

observed by PP analysis (Idp1, Cit1, Cit2, Fum1, Pdb1, Pda1,

and Aco2) and RPP analysis (idh1D, aco2D, fum1D, cit1D, and

lat1D) (Figures S5H and S5I). Furthermore, our approaches are

complementary to genetic interactions78 where significant en-
2028 Cell 186, 2018–2034, April 27, 2023
richments were found for 13 of the 33 TCA-cycle-related genes

(Figure S5J). The covariation analysis of the TCA cycle enzymes

highlights another interesting observation: the paralogs Cit1

(mitochondrial citrate synthase) and Cit2 are found in 2 different

clusters (Figure S5G), reflecting that they diverged functionally.

Although Cit1 covaries with Fum1, Kgd1 Sdh1, Sdh2, Mdh1,

Lsc1, and Lat1, its paralog Cit2 covaries with Pyc1, Pyc2, Idh1,

Idh2, and Idp1 (Figure S5G).

Functional proteomics provides orthogonal information
to functional genomics
We compared the highest-scoring 1% of the pairwise associa-

tions found by PS (n = 26,210 KO pairs, Table S6) and PC anal-

ysis (n = 26,255 protein pairs, Table S7). They connect a subset

of 1,284 KOs and 1,396 proteins, respectively. Some of these

genes are linked to fewer than five other genes, others to

more than 100 genes (Figure S7A; STAR Methods). Interest-

ingly, there is very little overlap between these top 1% pairwise

associations (Figure S7B). This indicates that proteome

profiling and KO profiling not only detect different genes (Fig-

ure S5F) but indeed different types of associations. Connecting

KOs by proteome PS preferentially captures genetic over phys-

ical interactions and associations that were previously detected

by literature text mining (Figures S7C and S7D). By contrast,

PC analysis captures physical interactions better than genetic

interactions and agrees best with associations previously found

through mRNA co-expression (Figures S7C and S7D).

Together, these data suggest that proteome and KO profiling

provide two complementary dimensions for gene-function

characterization.

One of the most successful genome-scale approaches of func-

tional genomics is SGAs that detect genetic interactions.38,78 To

understand how our approach compares to genetic interactions

in associating genes to function, we divided associations based

on whether they connected essential or non-essential genes

and whether they gave rise to positive or negative genetic interac-

tions (Figure S7E). Although KO studies do not cover essential

genes, PC does (Figures S5F and S7E). Intriguingly, PR analysis

reveals that PSs are better suited for detecting associations be-

tween KOs that have positive genetic interactions than those

that have negative ones. In fact, for positive associations, PS out-

performs the original genetic interaction scores, which more pre-

cisely identify functional links between negatively interacting

genes (Figure S7E). The PR performance of PC is consistently

strong and not affected by gene essentiality or the nature of the

genetic interaction (Figure S7E).

Exploring functional relationships within the yeast
proteome
To gain more insights into the functional relationships detected,

we explored several profiles in more detail (Figure 7). Dbp3 is an

RNA helicase involved in pre-rRNA processing,79 which our da-

taset contains both as a KO and as a quantified protein. Dbp3 lo-

cates to the nucleolar region of both the KO and protein maps

and is linked to other rRNA maturation and ribosome biogenesis

factors at both levels (Figures 7A and 7E). However, proteome

PS and PC detect a different subset of ribosome biogenesis fac-

tors. Similar functional relationships can be explored for all
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Figure 7. Exploring functional relationships in a proteomic map of genome-scale perturbation

(A) Proximity in the UMAPs of KO strains and proteins reflects functional similarity. Three KOs (topmap/left panel) and three proteins (bottommap/right panel) are

shown as examples. KOs/proteins that are strongly linked to the example gene (within 1% highest-scoring associations, STARMethods) are highlighted in color.

Selected GO terms enriched among these groups are indicated (enrichment p value from Fisher’s exact test).

(B) Protein fold-changes (FC) of two KOs that are near each other in the UMAP (vma5D and rtc2D, bottom left in A) are strongly correlated (biweight midcorrelation

coefficient = 0.63).

(C) Volcano plots of the PPs of the same KOs, revealing many overlapping differentially expressed proteins, a few of which are labeled.

(D) GO term enrichment for differentially expressed proteins using aMann-Whitney U test, revealing that vacuolar proteins are depleted in both KOs, whereas the

proteasome is enriched.

(E) Abundance changes of two example proteins, Dbp3 and Atp14, across KO strains are shown using volcano plots (RPP). Same GO enrichment analysis as in

(D), showing that, e.g., Dbp3 abundance is increased in KO strains related to ‘‘ribosome biogenesis.’’
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genes that were captured either at KO or protein level (e.g.,

SWD3, Atp14, and Arg7; Figures 7A and 7E).

Furthermore, proteomes offer detailed insights into why two

gene deletions can be similar in their biological impact. For

example, the VMA5 gene encodes a subunit of the vacuolar

membrane H+-ATPase.80 In the KO similarity map, vma5D clus-

ters together with many other genes with vacuolar functions,

including genes encoding other H+-ATPase subunits (Figure 7A).

One of its associated KOs is the putative vacuolar membrane

transporter RTC2. The PPs of the vma5D and rtc2D strains are

strongly correlated (Figure 7B), and they share a number of

differentially expressed proteins, such as an increase in heat-

shock proteins Ssa3, Ssa4, and Sse1 (Figure 7C). GO analysis

reveals that, in both KOs, the abundance of vacuolar proteins

is decreased, and the abundance of the proteasome is increased
(Figure 7D). Such insights facilitate hypothesis generation for

future mechanistic gene-function studies. For example, it is

possible that vacuolar defects in the vma5D, rtc2D, and related

KO strains lead to an accumulation of damaged proteins,

inducing the unfolded protein response that involves heat-shock

factors and the proteasome.

DISCUSSION

Genome-scale profiling of loss-of-function mutants has been

successfully used to map biological networks and gene func-

tion.6 Functional genomic profiling has been extensively applied

at the phenotypic level. The Yeast Phenome database (www.

yeastphenome.org) lists phenotypes of single-gene deletion

strains across 7,536 experimental conditions.81 Our study
Cell 186, 2018–2034, April 27, 2023 2029
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provides a significant amount of molecular data to help interpret

the detected phenotypes. Moreover, for associating functional

terms to genes, the proteome is complementary to these ap-

proaches and provides added value to other ‘‘functional omic’’

screens, as neither transcriptome nor metabolome captures

the post-transcriptional regulation of protein expression. For

instance, we herein identify protein complexes for which the

degradation of surplus subunits is induced when a gene encod-

ing a complex subunit is disrupted. Moreover, our dataset puts

such findings into context. We show that 20% of the studied

complexes behave differently and are increased upon the dele-

tion of one subunit. Our data indicate that, in these cases, feed-

back control mechanisms could be involved.

Moreover, functional proteomics generates insights into the

general principles that govern protein expression. On the one

hand, we confirm and quantify the paradigm that proteomic re-

sponses are driven by the function of the deleted protein. Paral-

ogs and proteins connected in genetic, metabolic, evolutionary,

or protein-protein interaction networks have a higher likelihood

of responding to the deletion of the connected gene. At the

same time, however, our dataset also shows that large fractions

of protein abundance changes are explained by general biolog-

ical properties that affect the proteome as a whole. These prop-

erties include the location of a protein-coding gene on a poten-

tially aneuploid chromosome, growth rate, translation rate, and

protein turnover.

Eventually, our study demonstrates added value for gene

annotation through the systematic generation and analysis of

proteomes. Through RPP, which identifies the genetic perturba-

tions that trigger an expression change in a particular protein,

and two guilt-by-association approaches82,83 that infer gene

function through proteome PS and proteins with similar expres-

sion patterns (PC), respectively, we show that annotation strate-

gies capture known and unknown functional associations. Thus,

the combination of multiple omic technologies with complemen-

tary strengths and biases could become a paradigm for providing

accurate and comprehensive data-driven gene-function annota-

tion. This is especially relevant for future studies addressing the

problem of understudied proteins, not only in model organisms

but also in a wide range of species and genetic backgrounds.

Limitations of the study
Although the yeast genome-scale KO collection is considered

an excellent genetic library and has been used in a large num-

ber of studies,6 it contains a low number of false negatives and

false positives and a subset of strains contain compensatory

mutations.6,84,85 We have estimated from our data that

more than 90% of the KOs have the correct gene deleted

(Figures S1D–S1F) and designed our analyses to minimize the

effects. Nevertheless, some individual results from our dataset

demand replication in subsequent, focused studies.

Moreover, we chose a minimal medium and a prototrophic

background because research from ourselves and others has

shown that rich media compositions result in the feedback inhi-

bition of manymetabolic pathways because cells uptake instead

of synthesize metabolites.15,86 However, the proteome response

is dependent on both the background and condition. We

measured and compared a subset of the KOs in a related back-
2030 Cell 186, 2018–2034, April 27, 2023
ground and found diverging proteome responses for some

genes (Figures S1J–S1L). Hence, additional proteomic analyses

will be required in the future and not all yeast studies are directly

comparable because of genetic background, the use of auxo-

trophs, and differing media.

Furthermore, our study reports a single proteome per KO

strain, and the reported fold-changes are based on relative

quantification. Although we show for strains with chromosomal

duplications that our technology overall captures expected

protein changes (Figures 2E, 3F, 3I, and 3J) and that the use of

large numbers of wild-type replicates increases the detectability

of differential protein abundances (Figures S1G–S1I), we cannot

exclude discrepancies for individual proteins. However, we and

many others in the field are active in developing next-generation

proteomic technologies that will drive larger studies with

absolute quantitative measurements in the future.
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Mülleder, M., and Ralser, M. (2022). Mass spectrometry-based

high-throughput proteomics and its role in biomedical studies and

systems biology. Proteomicse2200013. https://doi.org/10.1002/pmic.

202200013.
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Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. (2001).
2032 Cell 186, 2018–2034, April 27, 2023
Systematic genetic analysis with ordered arrays of yeast deletion

mutants. Science 294, 2364–2368.

39. Messenguy, F., and Dubois, E. (2000). Regulation of arginine metabolism

in Saccharomyces cerevisiae: a network of specific and pleiotropic pro-

teins in response to multiple environmental signals. Food Technol. Bio-

technol. 38, 277–286.

40. Slavov, N., and Botstein, D. (2011). Coupling among growth rate

response, metabolic cycle, and cell division cycle in yeast. Mol. Biol.

Cell 22, 1997–2009.

41. Fazio, A., Jewett, M.C., Daran-Lapujade, P., Mustacchi, R., Usaite, R.,

Pronk, J.T., Workman, C.T., and Nielsen, J. (2008). Transcription factor

control of growth rate dependent genes in Saccharomyces cerevisiae:

a three factor design. BMC Genomics 9, 341.

42. Airoldi, E.M., Huttenhower, C., Gresham, D., Lu, C., Caudy, A.A., Dun-

ham, M.J., Broach, J.R., Botstein, D., and Troyanskaya, O.G. (2009).

Predicting cellular growth from gene expression signatures. PLoS Com-

put. Biol. 5, e1000257.

43. Wytock, T.P., and Motter, A.E. (2019). Predicting growth rate from gene

expression. Proc. Natl. Acad. Sci. USA 116, 367–372.

44. Kleijn, I.T., Martı́nez-Segura, A., Bertaux, F., Saint, M., Kramer, H., Shah-

rezaei, V., and Marguerat, S. (2022). Growth-rate-dependent and

nutrient-specific gene expression resource allocation in fission yeast.

Life Sci. Alliance 5, 5. https://doi.org/10.26508/lsa.202101223.

45. Yu, R., Vorontsov, E., Sihlbom, C., and Nielsen, J. (2021). Quantifying

absolute gene expression profiles reveals distinct regulation of central

carbon metabolism genes in yeast. eLife 10, e65722. https://doi.org/

10.7554/eLife.65722.

46. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R.,

Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., et al. (2000).

Functional discovery via a compendium of expression profiles. Cell

102, 109–126.

47. Torres, E.M., Sokolsky, T., Tucker, C.M., Chan, L.Y., Boselli, M., Dun-

ham, M.J., and Amon, A. (2007). Effects of aneuploidy on cellular physi-

ology and cell division in haploid yeast. Science 317, 916–924.

48. Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., and Storch-

ova, Z. (2012). Global analysis of genome, transcriptome and proteome

reveals the response to aneuploidy in human cells. Mol. Syst. Biol. 8, 608.
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A., Melicher, F., Perfetto, L., Pokorný, D., Lopez, M.R., Türková, A.,
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Chemicals, peptides, and recombinant proteins

Water, Optima, LC-MS Grade, Optima, Fisher Chemical Fisher Scientific Cat#10509404; CAS: 7732-18-5

Acetonitrile, Optima, LC-MS Grade, Fisher Chemical Fisher Scientific Cat#10489553; CAS: 75-05-8

Thermo Scientific Pierce Formic Acid, LC-MS Grade Fisher Scientific Cat#13454279; CAS: 64-18-6

Methanol, Optima LC/MS Grade, Thermo Scientific Fisher Scientific Cat#10767665; CAS: 67-56-1

Yeast nitrogen base without amino acids Sigma-Aldrich Cat#Y0262

D-(+)-Glucose Sigma-Aldrich Cat#G7021; CAS: 50-99-7

DL-Dithiothreitol (BioUltra, for molecular biology,

>=99.5%)

Sigma Aldrich Cat#43815; CAS: 3483-12-3

Iodoacetamide (BioUltra) Sigma Aldrich Cat#I1149; CAS: 144-48-9

solid-glass beads (borosilicate, diam 4 mm) Sigma Aldrich Cat#Z143936

ammonium bicarbonate (eluent additive for LC-MS) Sigma Aldrich Cat#40867; CAS: 1066-33-7

Urea (puriss. P.a., ACS reagent, reag. Ph. Eur.,

>=99.5%)

Honeywell Research

Chemicals

Cat#33247H; CAS: 57-13-6

Acetic acid (Eluent additive for LC-MS) Honeywell Research

Chemicals

Cat#49199; CAS: 64-19-7

Trypsin (Sequence grade) Promega Cat#V5117

iRT peptides Biognosys Cat#Ki-3002-b

Deposited data

Raw proteome data This study ProteomeXchange: PXD036062

Processed proteome data This study Mendeley Data: http://doi.org/10.17632/w8jtmnszd9.1

Growth rates This study Mendeley Data: http://doi.org/10.17632/w8jtmnszd9.1

Yeast reference proteome databases Uniprot https://www.uniprot.org

Ribosomal profiling data McManus et al.56 http://doi.org/10.1101/gr.164996.113

Protein turnover rates Martin-Perez and Vill57 https://doi.org/10.1016/j.cels.2017.08.008

Gene networks Kim et al.34 https://www.inetbio.org/yeastnet/

Complex data Medal et al.87–89 https://www.ebi.ac.uk/complexportal/

Glycine concentrations Mülleder et al.15 http://doi.org/10.1016/j.cell.2016.09.007

Full GO term annotation Gene Ontology

Consortium

http://current.geneontology.org/products/

pages/downloads.html

GO slim terms Cherry et al.37 https://www.yeastgenome.org/

Colony size Cherry et al.37 https://www.yeastgenome.org/

Reactome Gillespie et al.90 https://reactome.org/

KEGG Kanehisa and Goto69;

Kanehisa70
https://www.genome.jp/kegg/

BioGRID Stark et al.91 https://thebiogrid.org

Yeast phenotype data (e.g. gene essentiality) Cherry92 http://sgd-archive.yeastgenome.org/curation/

literature/phenotype_data.tab

Protein abundances for all yeast proteins (meta-analysis) Ho et al.93 https://doi.org/10.1016/j.cels.2017.12.004

List of uncharacterised yeast genes YeastMine https://yeastmine.yeastgenome.org/yeastmine/

bagDetails.do?scope=all&bagName=

Uncharacterized_ORFs

Citations mapped to yeast genes Saccharomyces

Genome Database

http://sgd-archive.yeastgenome.org/curation/

literature/gene_literature.tab

S. cerevisiae Ohnologs Yeast gene order

browser35
http://ygob.ucd.ie/

Classification of duplicates Kuepfer et al.36 http://doi.org/10.1101/gr.3992505
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COMPLEAT Vinayagam et al.74 http://www.flyrnai.org/compleat

Genetic interactions Costanzo et al.78 https://thecellmap.org/costanzo2016/

STRING Szklarczyk et al.73 https://string-db.org

Experimental models: Organisms/strains

Prototrophic Saccharomyces cerevisiae deletion

collection (MATa, restored prototrophy)

Winzler et al.5; Mülleder

et al.94
http://www.euroscarf.de/

Software and algorithms

Proteomics data analysis via Deep Neural

Networks, DIA-NN

Demichev et al.28 https://github.com/vdemichev/DiaNN

DIA-NN R package Demichev et al.28 https://github.com/vdemichev/diann-rpackage

R Statistical Computing Software The R Foundation https://www.r-project.org/

tidyverse Wickham et al.95 https://cran.r-project.org/web/packages/tidyverse/

treeClust R package Buttrey and Whitaker96 https://CRAN.R-project.org/package=treeClust

caret R package for regression modeling Kuhn et al.97 https://CRAN.R-project.org/package=caret

Impute R package Hastie et al.98 https://bioconductor.org/packages/impute/

randomForest R package Liaw and Wiener99 https://CRAN.R-project.org/package=randomForest

WGCNA R package Zhang and Horvath100;

Langfelder and Horvath101
https://CRAN.R-project.org/package=WGCNA

PRROC R package Grau et al.102 https://CRAN.R-project.org/package=PRROC

ComplexHeatmap R package Gu et al.103 https://bioconductor.org/packages/ComplexHeatmap/

Circlize R package Gu et al.104 https://CRAN.R-project.org/package=circlize

Piano R package Väremo et al.105 https://github.com/varemo/piano

clusterProfiler Väremo et al.105 https://bioconductor.org/packages/clusterProfiler/

topGO R package Alexa and

Rahnenfuhrer106
https://bioconductor.org/packages/topGO/

limma R package Ritchie et al.107 https://bioconductor.org/packages/limma/

Other

96-Well MACROSpin C18, 50–450 mL The Nest Group Cat#SNS SS18VL

HSS T3 column (150 mm x 300 mm, 1.8 mm particles) Waters Cat#186009249

Breathe-Easy sealing membrane for multiwell plates Sigma Aldrich Cat#Z763624

Adhesive PCR plate foil Thermo Scientific Cat#AB0626

ABgene storage plates Thermo Scientific Cat#AB-0661

Glass beads, acid-washed (425-600 mm) Sigma Aldrich Cat#G8772

Cap mats Spex Cat#2201

Corning multiwell plates, plate lids and sealing mats Sigma Aldrich Cat#CLS3098

96-well Sample Collection plate (700 ml round well) Waters Cat#186005837

Pierce Quantitative Peptide Assays & Standards Thermo Scientific Cat#23290
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Markus

Ralser (markus.ralser@charite.de).

Materials availability
Requests for reagents should be directed to and will be fulfilled by the lead contact.

Data and code availability
d Raw mass spectrometry data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the massIVE repository with the dataset identifier ProteomeXchange: PXD036062. The dataset

identifier is listed in the key resources table. The measured growth rates and the processed datasets derived from the
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raw data have been deposited at Mendeley Data and the link is listed in the key resources table. The data are additionally

available through an interactive web application: https://y5k.bio.ed.ac.uk/. This paper contains analyses that used existing,

publicly available data. The identifiers for the datasets are also listed in the key resources table.

d No custom software codes were generated as part of this study. All analyses conducted in R, using standard, publicly acces-

sible packages obtained either through GitHub (https://github.com/), the Comprehensive R Archive Network (CRAN, https://

cran.r-project.org/), or Bioconductor (https://www.bioconductor.org/).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and library layout
We measured proteomes for all strains of Saccharomyces cerevisiae (S288c) haploid (MATa) deletion collection5 with restored

prototrophy94 that could be cultivated without major growth defect in minimal dextrose medium. To conduct the study, the single

knock-out strains were arranged on 96-well plates. A blank was introduced in each plate in a different position as a plate identifier.

This moving footprint starts at H12 and runs backwards (skipping control positions). The control strain (388 replicates) is the

complemented his3D deletion strain, haploid from a BY4741 prototrophic deletion collection. This control strain was introduced in

7 positions on each plate: A11, B8, C5, D2, F11, G8, H5. Plates 56 and 57 contain additional controls.

Culture
The yeast strainswere grown in batches of 12 96-well plates. In order to reduce batch effects, themedia for all batcheswere prepared

at once, pre-filled into 96-well plates, and stored at –80�C until the day of the experiment. Further, a 5x synthetic minimal (SM)

medium stock solution was prepared and stored at –80�C and used for the agar plates, which were prepared fresh on the day of

the experiment. All media were filtered (0.22 mm filter, GP Millipore Express Plus membrane) and the plates as well as the beads

were autoclaved before usage. All pipetting was done with a Biomek NXP liquid-handling robot (Beckmann) and yeast cells were

pinned with a pinning robot (Rotor, Singer Instruments).

The yeast strains were grown as previously published15 with slight modifications. The thawed stock cultures were spotted with the

pinning robot onto SM agar medium (6.7 g/l yeast nitrogen base without amino acids, 2% glucose, 2% agar) and incubated at 30�C
for 47–49 hours. Subsequently, these cells were used for inoculation in 200 ml SM liquid medium in 96-well plates and incubated at

30�C. After 19.75 hours, 160 ml culture was transferred to a deep-well plate (ABgene storage plates) pre-filled with 1,440 ml SM liquid

medium (1/10 dilution) and with one solid-glass bead (borosilicate) per well. The plates were sealed with a membrane (Breathe-Easy

sealing membrane for multiwell plates) and incubated for 8 hours at 30�C with 1,000 rpmmixing (Heidolph Titramax incubator). Sub-

sequently, the culture was transferred into a fresh 96-well plate (Eppendorf, 10052143) and spun down at 4,000 rpm (Eppendorf

Centrifuge 5810R). The supernatant was removed and the plate was sealed with aluminium foil (adhesive PCR plate foil) as well

as a plastic lid (CLS3098) before being frozen and stored at –80�C until further processing.

For the comparison with the SGA background, strains were cultivated as described above, except that 80 ml of pre-culture were

transferred into deep-well plates pre-filled with 1,550 ml of SM liquid medium (1/20 dilution).

METHOD DETAILS

Proteomic sample preparation
The protein extraction and digestion were conducted in batches of 4 plates (384 samples). In order to reduce batch effects, stock

solutions (120 mM iodoacetamide, 55 mM DL-dithiothreitol, 9 ml 0.1 mg/ml trypsin, 2 ml 4x iRT) were prepared at once and stored

at –80�C. Other stock solutions (7 M urea, 0.1 M ammonium bicarbonate, 10% formic acid) were stored at 4�C. All pipetting was

done with a Biomek NXP liquid-handling robot (Beckmann), shaking was done with a Thermomixer C (Eppendorf) after each step,

and for incubation a IPP55 incubator (Memmert) was used.

200 ml 7 M urea / 100 mM ammonium bicarbonate and glass beads (�100 mg/well, 425–600 mm) were added to the frozen pellet.

Subsequently, the plates were sealed (Cap mats, (Spex) 2201) and lysed using a Geno/Grinder (Spex) bead beater for 5 min at

1,500 rpm. After 1-min centrifugation at 4,000 rpm, 20 ml 55 mM DL-dithiothreitol were added (final concentration 5 mM), mixed,

and the samples were incubated for 1 h at 30�C. Subsequently, 20 ml 120 mM iodoacetamide were added (final concentration

10 mM) and incubated for 30 min in the dark at room temperature. 1 ml 100 mM ammonium bicarbonate was added, centrifuged

for 3 min at 4,000 rpm, then 230 ml were transferred to prefilled trypsin plates. After incubation of the samples for 17 h at 37�C,
24 ml 10% formic acid were added. The digestion mixtures were cleaned up using C18 96-well plates. For solid-phase extraction,

1 min of centrifugation at the described speeds (Centrifuge 5810R (Eppendorf)) was used to push the liquids through the stationary

phase and the liquid handler was used to pipette the liquids onto the material. The plates were conditioned with methanol (200 ml,

centrifuged at 50 g), washed twice with 50% ACN (200 ml, centrifuged at 50 g, then the flow-through discarded), equilibrated three

times with 3% ACN, 0.1% FA (200 ml, centrifuged at 50 g, 80 g, 100 g, respectively, then the flow-through discarded). 200 ml of di-

gested samples were then loaded (centrifuged at 100 g) andwashed three timeswith 3%ACN, 0.1%FA (200 ml, centrifuged at 100 g).

After the last washing step, the plates were centrifuged another time at 180 g before the peptides were eluted in 3 steps (twice with
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120 ml and oncewith 130 ml 50%ACN, 180 g) into a collection plate (1.1ml, squarewell, V-bottom). Collectedmaterial was completely

dried in a vacuum concentrator (Concentrator Plus (Eppendorf)) and redissolved in 40 ml 3% ACN, 0.1% formic acid before being

transferred into a 96-well plate (700 ml round, Waters, 186005837) prefilled with iRT peptides (2 ml, 4x diluted). QC samples for repeat

injections were prepared by pooling digested and cleaned-up samples from 4 different 96-well plates.

2 ml of each sample were loaded onto ‘Lunatic’ microfluidic 96-well plates (Unchained Labs). Peptide concentrations were

measured with the Lunatic instrument (Unchained Labs). Protein concentrations were calculated from the absorbance value at

280 nm and the protein-specific extinction coefficient.

For the comparison with the SGA background, samples were processed as described above, with the following adaptations:

after reduction and alkylation, samples were diluted using 460 ml of 0.1 M ammonium bicarbonate, and 500 ml of this mixture

were digested using 2 mg trypsin/LysC; the digest was stopped by adding 25 ml 25% formic acid; dried peptides were dissolved

in 70 ml 0.1% formic acid. As a technical control for MS measurements, 10 ml of each sample were pooled together and the

peptide concentration of this pool was determined using a fluorimetric peptide assay kit (Thermo Scientific, 23290). Peptide

concentrations of the samples before injection were estimated based on the optical densities of the samples at harvest and

the peptide pool concentration.

Deletion mutants in the SGA strain background
We constructed a diploid background by mating the BY4741 strain (MATa ura3D0 leu2D0 his3D1 met15D0) with Y7092, a starting

strain that carries markers for SGA selection (MATa can1D::STE2pr-Sp_his5 lyp1D ura3D0 leu2D0 his3D1 met15D0). The resulting

diploid is compatible with the standard sporulation/haploid selection procedure used in SGA.38 We selected 29 genes that have

broad proteome profiles but wild-type-like growth rates in the prototrophic deletion collection, and performed gene deletion in

the SGA-compatible diploid background using plasmid constructs for direct homologous gene deletion in diploid isolates based

on CRISPR-Cas9 as described previously.108 Briefly, a fragment carrying the natMXmarker bordered by �200 bp of sequences ho-

mologous up- and downstream of the targeted gene was cloned onto a plasmid backbone containing spCas9, a guide RNA, the

URA3 marker, the yeast CEN6 sequence fused to an autonomous replication sequence, as well as an ampicillin resistance marker

and an E. coli replication origin site from the standard pBluescript SK II (+). The 29 plasmids were individually transformed into the

SGA-compatible diploid background on SD-Ura+NATmedium. The transformants were subsequently transferred onto YP galactose

2% to induce the expression of the CRISPR-Cas9 system, where site-specific double-strand breaks were induced to favour the gene

deletion by homologous recombination. Deletion mutants were then selected on SC+5-FOA+NAT medium for integration of the

deletion fragment as well as the loss of the plasmid. After this procedure, the diploid starting strain will either carry a homozygous

or heterozygous deletion at the targeted locus. To mimic the double deletion mutant selection following the SGA procedure, diploid

deletion mutants were carried through the SGA selection steps, namely sporulation on Spo medium (1% potassium acetate + 0.1%

glucose), then on SC+canavanine+thialysine+NAT. The resulting deletion mutants carry the same genotype as SGA double mutants

(MATa,yfg1D::NAT can1D::STE2pr-Sp_his5 lyp1D ura3D0 leu2D0 his3D1 met15D0).

Liquid chromatography–mass spectrometry
The digested peptides were analysed on a nanoAcquity (Waters) running as microflow LC (5 ml/min), coupled to a TripleTOF 6600

(SCIEX). 2 mg of the yeast digest (injection volume was adjusted for each sample based on the measured peptide concentration)

were injected and the peptides were separated in a 19-min nonlinear gradient (Table S1) ramping from 3% B to 40% B (solvent

A: 1% acetonitrile/0.1% formic acid; solvent B: acetonitrile/0.1% formic acid). A HSS T3 column (Waters, 150 mm 3 300 mm,

1.8 mm particles) was used with a column temperature of 35�C. The DIA acquisition method consisted of an MS1 scan from m/z

400 to 1250 (50 ms accumulation time) and 40MS2 scans (35 ms accumulation time) with variable precursor isolation width covering

themass range fromm/z 400 to 1250 (Table S2). Rolling collision energy (default slope and intercept) with a collision energy spread of

15 V was used. A DuoSpray ion source was used with ion source gas 1 (nebuliser gas), ion source gas 2 (heater gas), and curtain gas

set to 15 psi, 20 psi, and 25 psi. The source temperature was set to 0�C and the ion-spray voltage to 5,500 V. Themeasurementswere

conducted within a period of 12 months and on 2 different platforms with identical setups.

For the comparison with the SGA background, wild-type and KO strains were analysed on a UltiMate 3000 RSL (Thermo) coupled

to a TimsTOF PRO (Bruker) mass spectrometer. Peptides were separated on the same column (Waters ACQUITY UPLC HSS T3

1.8 mm) at 40�C using a linear gradient ramping from 2% B to 40% B in 30 minutes (buffer A: 0.1% formic acid; buffer B: acetoni-

trile/0.1% formic acid) with a flow rate of 5 ml/min. The column was washed by an increase in 1 min to 80% buffer B that was

kept for 6 min. In the next 0.6 min the buffer B composition was changed to 2% and the column was equilibrated for 3 min. For

MS calibration of the ion mobility dimension, three ions of Agilent ESI-Low Tuning Mix ions were selected (m/z [Th], 1= K0:

622.0289, 0.9848; 922.0097, 1.1895; 1221.9906, 1.3820). The dia-PASEF windows scheme was ranging in dimension m/z from

400 to 1200 and in dimension 1=K0 0:6--1:43, with 32 3 25 Th windows with ramp time 100 ms.

Quality control samples
To monitor measurement quality and reproducibility, we included 388WT controls, a strain in which a his3D::kanMX deletion is com-

plemented by heterologous expression of the HIS3 enzyme.15,94 In addition, we measured 389 quality control (QC) samples (pooled

yeast digest, 7 per plate), bringing it to a total of 777 proteome samples measured as controls.
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DIA library generation
The libraries were generated from ‘‘gas-phase fractionation’’109 runs using scanning SWATH22 and small precursor isolation win-

dows. 5 mg yeast digests were injected and run on a nanoAcquity UPLC (Waters) coupled to a TripleTOF 6600 (SCIEX) with a

DuoSpray Turbo V source (SCIEX). The peptides were separated on a HSS T3 column (Waters, 150 mm3 300 mm, 1.8 mm particles)

with a column temperature of 35�C and a flow rate of 5 ml/min. A 55-min linear gradient ramping from 3% acetonitrile/0.1% formic

acid to 40%acetonitrile/0.1% formic acid was applied. The ion source gas 1 (nebuliser gas), ion source gas 2 (heater gas), and curtain

gas were set to 15 psi, 20 psi, and 25 psi. The source temperature was set to 75�C and the ion spray voltage to 5,500 V. In total 11

injections were run with the following mass ranges: m/z 400–450, 445–500, 495–550, 545–600, 595–650, 645–700, 695–750,

745–800, 795–850, 845–900, 895–1000, and 995–1200. The precursor isolation window was set to m/z 1 except for mass

ranges m/z 895–1000 and 995–1200, where the precursor windows were set to m/z 2 and 3, respectively. The cycle time was

3 sec, consisting of high- and low-energy scan, and data were acquired in ‘‘high resolution’’ mode. A spectral library was generated

using library-free analysis with DIA-NN directly from these scanning SWATH acquisitions. The UniProt110 yeast canonical proteome

was used for library annotation.

Growth assays
Growth assayswere performed onSC, SM, and YPDmedia by time-course imaging of colonies, using our Pyphe pipeline.111,112 Library

plates were grown from cryostocks in 384 format for three days on agar media. Plates were thenmultiplexed into 1,536 format on agar

with two grids of 96wild-type controls (complemented his3D deletion strain) placed in the top-left and bottom-right corners. Plateswere

then passaged again and copied onto fresh agar plates which were immediately placed into a V800 transmission scanner (Epson)

located in an incubator maintained at 30�C. Plates were imaged approximately every 20 min for 40 h. Growth curves based on pixel

intensity values were extracted and smoothed using a median and Gaussian filter with kernel sizes of 3. Maximum slopes were then

extracted using a sliding window of length 5. Grid values in the bottom-left and top-right corner were extrapolated using linear regres-

sion. Maximum slopes were normalised by grid correction113 and repeats for the same knock-out were averaged. Assay plates consis-

tently exhibited signal-to-noise ratios above 30 and fractions of unexplained variance below 20%, indicating high data quality.

‘‘Normal’’ and ‘‘slow’’ growth rates are defined asR 0.8 and < 0.8, respectively (Figure 3A). For the comparison of the dispersion

(Figure 3B) we defined the ranges to be more narrow to compare strains with a more defined growth rate and not distributions of

growth rates. Here we defined slow growing as normalised growth rates between 0.3 and 0.4 and normal growing as 0.9 to 1.0.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were done in R.114 For basic data manipulation and visualisation the R tidyverse group of packages were

used.95

Coefficients of variations (CV) were calculated as follows: empirical standard deviations for each protein or precursor were divided

by its empirical mean, and are reported in percentages. CV values were calculated for proteins or precursors identified in at least two

replicate measurements.

For several analyses, the protein intensities were centred (as mentioned in the respective section). Centred protein intensities were

calculated by dividing each protein intensities by the median of the respective protein across all knock-out and WT samples.

Conversion between UniProt IDs, gene names, and open reading frames (ORFs) was done with the bitr function within the clus-

terProfiler package115,116 or using the UniProt database.110

For boxplots, the first and third quartiles, as well as the median (thick line), are shown; whiskers extend to the most extreme data

point that is no more than 1.53 the interquartile range from the box.

Normalization, batch correction, filtering, and protein quantification
Raw data processing was carried out with DIA-NN28 (Version 1.7.12) with default settings, with MS2 andMS1mass accuracies set to

20 ppm and scan window size set to 6.

Precursors were filtered for q-values < 0.01 (precursor and protein level) and only proteotypic peptides were considered. Batches

(plates) were corrected by bringing median precursor quantities of each batch to the same value (dividing the quantities by the plate

median andmultiplying themwith themedian of all plate medians). Precursors were only considered if identified in > 80%ofWT sam-

ples and if quantified with CV < 50%. Samples were removed if the number of identified precursors was less than 80% of the

maximum number of precursors. Protein quantities were obtained using the MaxLFQ algorithm117 as implemented in the DIA-NN

R package (https://github.com/vdemichev/diann-rpackage). Missing values were imputed with a mixed imputation strategy: Protein

quantities that were missing in < 5% of the samples per plate were imputed with a random value between 0 and the minimum protein

quantity per plate. Values that were missing in > 5% of the samples per plate were imputed with nearest neighbour averaging (KNN)

using the impute.knn function from the R package impute.98

Differential protein expression/abundance analysis
Differential abundance analysis was conducted on the processed data (see above) after log2 transformation. We determined differ-

ential abundances of proteins in the single-replicate deletion strains by taking into account the variation of each protein in the 388
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wild-type replicate measurements across the 57 batches. We used limma107 to fit a linear model and applied empirical Bayes for in-

formation borrowing between genes, which has proven advantageous on datasets with low numbers of replicates.107 The linear

models were fitted gene-wise using the lmFit function within the limma package.107 Each of the knock-outs was compared against

the compendium of 388 wild-type samples using the makeContrasts function (limma R package).107 The t-statistics were computed

using the ebayes function, allowing an intensity trend in the prior variance (trend = TRUE). Adjusted p-values were extracted using the

topTable function. BH was used for multiple testing.62 If not mentioned otherwise, we call proteins differentially expressed if the

adjusted p-value is below 0.01.

For some analysis, fold-changeswere estimated by the ratio of the quantity within a strain and themedian quantity of the respective

protein across all knock-outs andwild-type strains (centred intensities). Of note, the differences between themedians of theWT sam-

ples and the medians of the knock-outs are negligible (ratios of median WT / median KO are < 1.01 and > 0.99).

Strains were not measured in replicates. However, for 145 ORFs, more than one strain exists in the library (these strains have

different origins). 141 gene deletions are duplicated and 4 triplicated. For the descriptive analysis (Figure 1), each strain was treated

independently in the differential expression analysis. For the functional analysis (enrichments) the duplicated strains were averaged in

the differential expression analysis to avoid that the same gene is counted more than once in the overrepresentation analysis.

Power analysis
In order to estimate the statistical power, we created a simulated dataset that contains simulated WT proteomes (‘‘WT_sim’’) as well

as one simulated single-replicate KO proteome (‘‘KO_sim’’). The proteins in KO_sim andWT_sim are normally distributed. Their stan-

dard deviation and mean values were estimated from the measured 388 WT strain proteomes. In order to simulate a biological

response in ‘‘KO_sim’’ we changed abundances of 185 randomly assigned proteins (10% of all proteins) and introduced defined

fold-changes to the normally distributed values.

First, we evaluated the effect of a varying number ofWT strains on the power.We added a fold-change of 0.67/1.5 (log2 FC of±0.58)

to 10% of randomly selected proteins and changed the number of ‘‘WT_sim’’. We then applied the same statistical approach as we

used to analyse our dataset (see Differential protein expression/abundance analysis section above). The protein changes we could

recall with an adjusted p-value cutoff of 0.01 was 0% for 0–6 WT replicates, 34% for 10 WT replicates, and reached 52% in 21 WT

replicates (Figure S1G).

We then repeated the procedure for increasing fold-changes. We used 370 ‘‘WT_sim’’ samples, one ‘‘KO_sim’’ sample, adjusted

p-value cutoff = 0.01 (BH), and varied the fold-changes (log2 FC between 0.1 and 1 (up and down)) for 185 proteins. We found that for

17%, 48%, and 84% of the proteins, changes could be recalled for log2 FC of ±0.3, ±0.5, and ±1.0, respectively (Figure S1H).

Finally we estimated the power for different p-value cutoffs (0.01 to 0.1) using 370 ‘‘WT_sim’’ samples, one ‘‘KO_sim’’ sample, and

fixed 0.67/1.5 fold-changes for 185 randomly selected proteins. We could recall 55%, 65%, and 69% of the protein changes with

adjusted p-value cutoffs of 0.01, 0.05, and 0.1 (Figure S1I).

Effect of deletions on functional interactions and networks
Functional interactions were downloaded from YeastNet (v3, Kim et al.34) and compared to differential protein expression

(p-value < 0.01, BH for multiple testing) upon gene deletion of interaction partners. The total number of affected pairs (interaction

partner is DE) within each data type (co-expression, high-throughput protein–protein interaction, genetic interactions, literature-

curated protein–protein interaction, phylogenetic profiles, genomic neighbour, co-occurrence, tertiary structure of protein) was

divided by the total number of differentially abundant proteins across the dataset and multiplied by 100 (% of differential expression

explained by known connection between knock-out and protein) (Figure 2D).

Differentially expressed proteins of distance i (from gene deletion) were normalised to the total number of interactions of distance i

within the respective data type (co-expression, high-throughput protein–protein interaction, genetic interactions, literature-curated

protein–protein interaction, phylogenetic profiles, genomic neighbour, co-occurrence, tertiary structure of protein). The number of

affected pairs within each distance and data type are illustrated as dot sizes in Figure 2E. Significance was calculated with a one-

sided hypergeometric test (more significantly affected interactions than random) using the phyper function within the stats R pack-

age.114 Some interactions are represented inmore than one network, but the average overlap between two networks is less than 10%

(Figure S2B).

Analysis of paralogs (ohnologs)
The assignment of paralogs from whole genome duplications (ohnologs) was downloaded from the yeast gene order browser35 (see

key resources table). The impact of a deletion on an ohnolog partner was estimated by using the differential expression analysis as

outlined in the differential expression analysis methods section. We calculated the total number of differentially expressed ohnolog

partners (reduced and increased abundance separately) and normalised it to the average number of protein changes (in percent). The

statistical significance was calculated with a hypergeometric test (statistical significance of having more protein abundance changes

among paralog pairs) (Figure 2F). To calculate the covariation of ohnolog pairs we calculated Spearman correlation coefficients for all

assigned pairs. The significance was calculated with aWilcoxon signed rank test. For the analyses of duplicated metabolic enzymes,

we obtained the list and the classification from Kuepfer et al.36 The groups ‘‘partial backup’’ and ‘‘specialised’’ were not considered,
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as less than 3 measured proteins or knock-outs could be assigned to those groups. We further grouped paralogs as protein com-

ponents of the ribosome (according to the GO term ‘‘structural constituent of ribosome’’37 in Figures 2H and 2I.

Growth-rate associated proteins
Growth association of proteins was evaluated by calculating the correlation coefficients of growth rates with protein abundance

changes across the KO strains. The cor function within the stats R package114 was used and Pearson correlation coefficients

were reported.

Analysis of chromosomal copy-number alterations
For each strain, log2 ratios between protein abundances and the median expression of the respective protein across all KO strains

(presumed euploid) were calculated. Log2 expression ratios were then normalised strain-wise by subtracting the median log2 ratio

per KO strain from all log2 protein ratios. To find aneuploid strains, chromosomes were assessed in 100-kb windows, with iteration

of the start of these windows in 10-kb steps. If protein abundances for at least five proteins within a window had been measured, the

median segment log2 ratios were calculated. A strain was considered potentially aneuploid if it contained at least one window with a

median log2 ratio > 0.5.Manual inspection of chromosome-ordered log2 ratios of these suspected aneuploidswas performed in order

to verify the strains as whole-chromosome or segmental aneuploids and to exclude strains falsely predicted to be aneuploid after the

above described filtering. Heatmaps were generated with the ComplexHeatmap R package and default settings.103

Enrichment analysis was performed on the knock-outs that induced aneuploidy using the GO slim terms37 (Figure S3G). The run-

GSAhyper function (Fisher’s exact test) within the piano R package105 was used. BH was used for multiple testing.62 All measured

knock-outs were used as background.

Machine-learning models for the prediction of protein half-lives and ribosome occupancy
We used elastic net regression models55 and tested if the abundance changes of a protein across the knock-outs can predict

ribosome occupancy (as a proxy of translation rate) and protein half-life. To construct the elastic net models, protein abundance

values measured across the knock-outs were used as predictor variables and the protein half-lives or ribosome occupancies

from reference datasets56,57 as response variables. The generalised linear models with elastic net55 were applied using the glmnet

implementation118,119 within the caret R package.97 We used elastic net models, because its penalty is particularly useful for corre-

lated or high numbers of predictor variables.118 The data were log2 transformed (protein quantities and half-lives/ribosome occu-

pancy), scaled, and centred. Models were trained using the train function (caret R package97). 10-fold cross-validation with a

tune length of 5 was performed for parameter optimisation. The models were trained on 80% of the proteins (1,398 proteins for

half-life; 1,392 proteins for ribosome occupancy) and subsequently applied on the remaining 20% of the proteins (348 proteins

for half-life; 346 proteins for ribosome occupancy). The protein abundances across all measured knock-out strains were used as pre-

dictor variables (n = 4,552). Plots and R squared values were reported for proteins from the test set (not used for parameter optimi-

sation). Feature/variable importance was estimated using the absolute value of the coefficients corresponding to the tunedmodel, as

implemented in the varimp function within the caret R package.97

Enrichment on the features for the ribosomal profiling data was done using features/variables (knock-outs) with a relative impor-

tance > 30. Gene set analysis (Fisher’s exact test) was performed using the runGSAhyper function within the piano R package.105 The

GO slim terms37 were used as geneset. BH was used for multiple testing.62 All measured knock-outs were used as background.

We used reference datasets for protein turnover, obtained by metabolic labelling57 as well as ribosome occupancy, determined by

ribosomal profiling.56 For the latter, the mean values of RepA and RepB from the mixed parental ribosome occupancy (reference da-

taset57) was used as an estimate of ribosome occupancy.

Systematic analysis of complex subunit alterations
A list of protein complexes was downloaded from the EBI complex portal.87–89 Complexes with less than 3 measured proteins

were excluded from the analysis. In addition, the following complexes were removed before the analysis due to redundancy in sub-

units: CPX-1882, CPX-1883, CPX-776, CPX-1675, CPX-473, CPX-1602, CPX-769, CPX-770, CPX-771, CPX-776, CPX-581, CPX-44,

CPX-32, CPX-1102. Further, we filtered out knock-outs where we detected the knocked-out protein (Figures S1D–S1F). In total we

considered 51 complexes. Statistical testing was performed by comparing the complex subunits between the respective knock-outs

and wild-type samples (n = 264), assuming that the subunits have equal variances. Non-parametric testing was performed using a

Wilcoxon signed-rank test with an adjusted p-value cutoff of 0.05. BH was used for multiple testing correction.62 In Figure 5B, com-

plexes were considered as affected if at least one knock-out of a subunit showed significant differential expression (adj.

p-value < 0.05) of the measured proteins.

Genome-scale pathway perturbation map
The KO strains were grouped according to KEGG pathways.69,70 Differential expression analysis was performed using the limma

approach (see section differential protein expression/abundance analysis), but instead of the knock-outs (as above), the pathways

were defined in themodel and compared against the wild type using themakeContrasts function within the limma R package.107 The

results of this differential expression analysis (p-value < 0.01, BH for multiple testing62) were fed into an over-representation analysis.
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Gene set analysis (Fisher’s exact test) was performed using the runGSAhyper function within the piano R package.105 The adjusted

p-value cutoff was set to 0.01 (BH was used for multiple testing62). KEGG terms69,70 were used as gene sets and the minimum and

maximum gene set size were set to 5 and 100, respectively. All measured knock-outs were used as backgrounds. The genome-scale

pathway perturbation map was illustrated as a chord diagram using the chordDiagram function within the circlize R package.104 Ar-

rows face from perturbed pathways (as grouped for the differential abundance analysis) to the affected pathways (significantly en-

riched terms).

Functional enrichment analysis of PP, RPP, PS, PC
Enrichment analysis for groups of KO strains and proteins was performed using Gene Ontology (GO), KEGG,70 and Reactome90

terms. To test enrichment of proteome profiles of KO strains (PP), we considered the group of differentially abundant proteins in

each strain, defined as those with a BH-adjusted p-value < 0.01 from the limma analysis. The same strategy was used to test the

groups of KO strains in which a protein was differentially expressed (RPP). The KOs that were strongly linked to a KO-of-interest

based on proteome profile similarity were defined as those that scored in the top 1% of all analysed KO–KO associations (PS).

The proteins that were strongly linked to a protein-of-interest by protein covariation were defined as those that scored in the top

1% of all analysed protein–protein associations (PC). The TopGO R package was used to test GO term enrichment in these groups

using the default ‘‘weight01’’ algorithm, which takes the GO topology into account.106,120 The nodeSize parameter was set to 10,

which prunes theGO hierarchy from the termswhich have less than 10 annotated genes. TopGO termswith a p-value of 0.01 or lower

were considered to be enriched. GO annotations for yeast were obtained from the website of the Gene Ontology consortium (see key

resources table). KEGG and Reactome – based gene set enrichment analysis (Fisher’s exact test) was performed using the

runGSAhyper function within the piano R package.105 Theminimum andmaximumgene set size were set to 10 and 100, respectively.

The adjusted p-value cutoff was set to 0.01 (BH was used for multiple testing62). Only the knock-outs and proteins subjected to the

PP, RPP, PS, and PC analyses, respectively, were used as background for the functional enrichment analysis (rather than the entire

yeast genome or proteome).

Enrichments within the TCA cycle
Enrichments were performed as described above for the genes belonging to the KEGG term ‘‘citrate cycle (TCA cycle).’’69,70 We

tested only for the enrichments of the same pathway and therefore no multiple testing was applied. P-value cutoff was set to 0.01

(Figure 6G).

Data transformation for the analysis of protein covariation and proteome profile similarity
For proteome profile similarity assessment of KO strains, protein intensities were divided by the median intensity across all strains

(WT, KO, and QC samples) and log2 transformed. The resulting data matrix contained relative protein level changes of 1,850 proteins

across 5,463 samples without missing values (see above for imputation strategy). For protein covariation analysis, protein intensities

were transformed in the same way but starting from a non-imputed and less stringently filtered data matrix (considering precursors

identified in > 50% rather than 80% of WT samples), because this type of analysis is not affected by a moderate amount of missing

values.121 The resulting data matrix contained 2,292 proteins across 5,552 samples (includes WT and QC samples) with 7.5%

missing values.

Profile comparisons using correlation and distance metrics
To avoid spurious correlations between proteome profiles, log2 fold-changes were normalised such that the median fold-change of

each protein across KOswas zero. To avoid spurious correlations between KO profiles, log2 fold-changes were normalised such that

the median protein fold-change of each KO was zero. We tested a range of similarity metrics, including three correlation metrics,

three ‘‘conventional’’ distance metrics (Euclidean, Manhattan, Minkowski), and two decision-tree-based distance metrics. Input

data were scaled (z-transformed) prior to calculation of conventional distance metrics. Pearson and Spearman correlations, as

well as Euclidean, Manhattan, and Minkowski distances were calculated using base R functions. Biweight midcorrelation (bicor)

was applied through the WGCNA R package.101,122 The treeClust R package96 was used to calculate distances with the treeClust

algorithm, using default parameters except for minsplit = 500, which had been identified as the optimal parameter setting using

PR test runs. Unsupervised random forests (uRFs) were used through the randomForest R package.99 Note that uRFs do not

work on datasets with missing values, so for covariation analysis via uRFs, missing values were imputed using the k-nearest-neigh-

bour imputation algorithm of the impute R package.98

The topological overlap matrix was calculated using the TOMsimilarity function of the WGCNA R package.100,101

Precision-recall analysis
Precision–recall (PR) curves and the areas under these curves were calculated using the PRROC R package.102

We used two separate, partially overlapping gold standards for the PR analyses in this study: one based on functional protein–

protein associations reported by String v1173 and one based on the COMPLEAT set of protein complexes.74 For the STRING gold

standard, true positive (TP) associationswere defined as gene pairs with a combined STRING score ofR 700 (high confidence). False

positive (FP) pairs were defined as all pairs that were not linked by STRING at any confidence level. The COMPLEAT gold standard
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was described previously.15,74 From both gold standards we further excluded FP pairs that had been found associated by either

String, COMPLEAT, BioGRID v3.591 or Gene Ontology.123 In addition, we removed all genes that had not been detected as part

of the Y5K dataset, and those that could not be unambiguously cross-mapped between UniProt IDs and systematic gene names

(OLNs). The resulting gold standards contain 70,023 unique String TPs, 58,785 unique COMPLEAT TPs, and 14,726 TPs that overlap

between the two standards.

Feature selection for gene-function prediction
As an initial proof-of-principle experiment, we subjected 50 randomly selected groups of 185 proteins to PR analyses using the

STRING gold standard. Although this was only a miniscule fraction of the theoretically possible 5310259 185-protein combinations,

several of these randomly selected subsets identified functionally related knock-out genes with higher precision than a PR analysis

using all 1,850 proteins. This indicates that the high dimensionality of our data was a challenge (‘‘curse of dimensionality’’) and that

functional predictions could be improved by selecting an optimal subset of proteins (feature selection). We therefore aimed to sys-

tematically select the best features (i.e. proteins) to link KO strains. In principle, it would be possible to identify the optimal subset of

features for this task simply by selecting those that result in the largest area under the PR curve. However, such a ‘‘cherry-picking’’

approach may not extrapolate well to other data sets or gold standards. We therefore based our feature selection process on the

prediction of growth rates. Our rationale was that proteins which are important for growth-rate predictionmay also be the oneswhose

expression changes are relevant for linking KO strains (see legend of Figure S6 for additional explanations).

For this feature selection processwe took advantage of the ability of random forests (RFs) to determine the importance of individual

features (i.e. proteins) for a regression task.124 We used the randomForest R package99 to train RF regression models on the growth

rates of all KO and wildtype strains. We trained three separate RFs (technical replicates) for each of the three growth media (SC, SM,

YPD) for which growth rates had been measured. These 9 RF models were created using default parameters except for nodesize,

which was set to 100 to speed up the calculation. To test if RF regression models can accurately predict growth rates, we created

a 10th model in which we withheld 500 strains from the training set and predicted their growth rates in YPD medium (Figure S3A).

Feature importance was determined as the increase in node purity for each protein (‘‘IncNodePurity’’ output from the RF models).

Under the chosen parameter settings we found this measure of feature importance to be highly reproducible between technical rep-

licates, i.e. RF models trained on the same input data (R2 = 0.99). However, feature importance differed considerably for growth rate

predictions in the three growth media (e.g. R2 = 0.65 between SM and SC). Feature importances from different RF models were

scaled (z-transformed) and proteins were ranked by the minimum importance they achieved across different RF models.

To select the best features (KO strains) for protein covariation analysis, KO strains were ranked by the number of differentially ex-

pressed proteins in decreasing order. The most responsive 10% of KO strains selected in this way proved to be the ideal set of KO

strains to use for protein covariation analysis (Figure S6).

UMAP visualization
The R implementation of the Uniform Manifold Approximation and Projection (UMAP) algorithm77,125,126 was used to reduce protein

and KO correlation matrices down to two dimensions. Since UMAP uses distances and not similarities to calculate the low dimen-

sional projection of the data, biweight midcorrelations were inverted (multiplied by –1) before UMAP analysis.

Additional data annotation
Essential yeast genes were defined as those annotated as ‘‘inviable’’ in the Saccharomyces Genome Database.92 A list of unchar-

acterised yeast genes was downloaded from YeastMine.127 Protein lengths were extracted from UniProt.110 Protein abundances for

Figure S5F, which had to cover proteins that were not detected in this analysis, were extracted from ameta-analysis of absolute pro-

tein concentrations in yeast.93 Gene Ontology (GO) term enrichment for the vma5D and rtc2D strains (Figure 7) were carried out using

the Panther website as described.128

Comparison with genetic interactions
For the in-depth comparison of our data with genetic interactions (GIs) we considered genome-scale genetic interaction scores and

genetic interaction profiles from Costanzo and colleagues.78 Raw scores from the Nonessential x Nonessential (NxN), Essential x

Essential (ExE) and Nonessential x Essential (ExN) networks were downloaded from https://thecellmap.org/costanzo2016/ and

the duplicate pairs were averaged. For GI profiles we considered the similarity values (Pearson correlations) computed by Costanzo

et al. for all gene pairs combined, available from the same website. For the purpose of our precision–recall analysis, all gene pairs

with a genetic interaction score (ε) > 0 were considered to be positive GIs, and those with ε < 0 were defined as negative GIs. Inter-

actions involving an essential gene, i.e. those from the ExE or ExN networks, were further distinguished from interactions between

non-essential genes from the NxN network. Precision–recall analysis was performed as described above.
Cell 186, 2018–2034.e1–e9, April 27, 2023 e9

https://thecellmap.org/costanzo2016/


Supplemental figures

(legend on next page)

ll
OPEN ACCESSResource



Figure S1. Precise quantitative proteomes for the genome-scale yeast gene-deletion collection, grown in a minimal medium, related to

Figure 1

(A) Consistency of identifications and its dependency on protein abundance. Completeness was calculated for each protein as the number of samples in which

the respective protein was identified divided by the total number of samples. Completeness is plotted as a function of abundance (approximated by the median

intensity across KOs). The filtered and processed dataset (no imputation) was used.

(B) The coefficients of variation (in %) were calculated for whole-process control samples (WT, green, n = 388), and KO samples (orange, n = 4,699).

(C) Median intensity values across all WT samples are plotted against copy numbers per cell taken from a reference dataset.33 Scales are log10 transformed.

(D) In 87% (839) of the testable KO strains, the deleted protein was not detected. In 39 strains (4%) the deleted proteins were found significantly changed in

abundance, and in 82 strains (9%) the supposedly deleted protein is detected at a level similar to wild type (not significantly differentially expressed; 0.01 p value

cutoff).

(E) Measured intensities of proteins that are deleted but detected (n = 121 strains). In 39 of those strains the protein was found significantly differentially

expressed. Intensities are centered (normalized by the median intensity across all KOs). 0.01 p value cutoff, BH for multiple testing.62

(F) Number of proteins that are differentially expressed (p value 0.01, BH for multiple testing62) in strains with detectable and non-differentially expressed deleted

proteins (n = 82 strains). 44 strains have >10 proteins differentially expressed.

(G) Effect of varying number of simulated WT samples on statistical power. We generated a simulated dataset with normally distributed samples, with standard

deviation and mean values calculated from the 388 WT samples measured. To simulate a biological response in the ‘‘KO_sim’’ sample we added to 185 proteins

(10% of measured proteins; randomly assigned) of this sample (KO_sim) a defined fold-change of 0.67 or 1.5 (log2 FC of ±0.58). The number of simulated WT

samples was varied and we calculated the percentage of proteins we could recall as differentially expressed using a 0.01 adjusted p value cutoff (BH for multiple

testing62).

(H) Effect of varying fold-changes on statistical power. Same as (G) but with varying fold-changes (log2 FC between 0.1 and 1). We used 370 ‘‘WT_sim’’ samples,

1 KO_sim sample, adjusted p value cutoff = 0.01 (BH), and varied the |log2 FC| between 0.1 and 1 (up and down) for 185 proteins.

(I) Effect of varying p value cutoffs on statistical power. Same as above but with varying p value cutoffs (adjusted p values between 0.01 and 0.1). We used 370

WT_sim samples, 1 KO_sim sample, and a fixed 0.67-/1.5-fold-change for 185 randomly selected proteins.

(J) Protein responses (fold-changes) upon gene deletions in two different backgrounds (prototroph and synthetic genetic arrays [SGAs]). Fold-changes were

calculated by dividing each protein quantity by the median quantity of the respective protein across all the KOs within a background. Spearman correlation

coefficients are given and plots are sorted by decreasing coefficients.

(K) Protein intensities of WT samples are compared between prototroph background and SGA38 mutants. The mean values of 6 samples measured in each

background are compared. x axis and y axis were log10 transformed.

(L) Correlation coefficients of protein responses (fold-changes) upon deletions in two different backgrounds are shown as histogram. The pairwise correlations

were calculated for 29 different KOs (dep1D, lge1D, snt1D, sin3D, rxt2D, rxt3D, pho23D, mrc1D, chd1D, sap30D, sif2D, hst1D, hos2D, set3D, swd3D, set2D,

cti6D, fkh1D, swd1D, spp1D, ume1D, bre2D, hsl7D, sdc1D, dpb4D, isw1D, itc1D, paf1D, ioc2D).
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Figure S2. The proteomic response to systematic gene deletion reveals principles of protein abundance changes, related to Figure 2

(A) Upregulations (x axis) and downregulation (y axis) of each protein across the KO strains. Proteins related to oligosaccharide metabolic process (green) and

tRNA aminoacylation for protein translation (orange) are labeled.

(B) Overlap between genetic, physical, and functional interaction networks. The overlap is normalized to the size of the network given on the y axis. Numbers are

given in %, with 100 indicating a complete overlap. Interactions were downloaded from YestNet (v3, Kim et al.34) (LC, literature curated PPI; TS, tertiary structure

of protein; HT, high-throughput PPI; GN, genomic neighbor; CX, co-expression; GT, genetic interaction; DC, domain co-occurrence; PG, phylogenetic profiles).

(C) Differential protein expression in arg81D (left) and rps27bD (right) strains. While arg81D has a specific proteome response with a low number of differentially

expressed proteins, many proteins are affected in rps27bD. Differential expression was calculated with the limma package107 and BH was used for multiple

testing62 (STAR Methods). The x axis shows centered log2 intensities and the y axis shows adjusted p values (�log10 transformed).

(D) Number of differential expressions for each gene deletion, grouped by Gene Ontology slim terms for ‘‘biological process.’’37 Differential expression was

calculated with the limma package107 and BH was used for multiple testing62 (STAR Methods).
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Figure S3. Broad proteomic changes in many slow-growing strains can be explained by chromosomal copy-number variations (aneu-

ploidies) and their transmission to the proteome, related to Figure 3

(A) Growth rates were predicted from the protein abundances using a random forest (RF) algorithm. Growth rates in YPD medium were measured for all strains

(STAR Methods). We then trained an RF regression model to predict these KO strain growth rates from the abundances of the 1,850 quantified proteins. 500 KO

strains were left out from training the RF regression model, which was subsequently used to predict their growth rates in YPD medium. See also Figure S6 and

STAR Methods.

(legend continued on next page)
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(B) Growth rates (normalized) for each KO strain, grouped by cellular compartments (GO slim terms for cellular compartment37). The first and third quartiles, as

well as the median, are shown with boxplots, and the whiskers extend to the most extreme data point that is no more than 1.53 the interquartile range from

the box.

(C) The proteomic changes in KO strains are only partially explained by growth-rate-correlated proteins. Number of differential expressions (adjusted

p value < 0.01, BH for multiple testing62) across the KO strain was calculated for each protein, and proteins were grouped into growth-related (green) and non-

growth-related proteins (orange) depending on their respective correlation with growth rate (growth-related: r > 0.2 or r < �0.2, non-growth-

related: �0.2 < r < 0.2).

(D) Chromosomes differ in their likelihood of being aneuploid in the genome-scale deletion collection.

(E) Number of differentially abundant proteins (adjusted p value < 0.01, BH for multiple testing62) is shown for proteins on the chromosomewith the copy-number

variation (n = 84, median = 38) and for the remaining chromosomes (n = 84, median = 83.5). All strains identified as having whole-chromosome aneuploidy were

considered.

(F) The numbers of significantly changed proteins are compared between euploid (n = 4,161, median = 9), aneuploidy without the proteins on the chromosomes

with altered copy number (n = 84, median = 83.5), and aneuploidy including the proteins on the chromosomes with altered copy number (n = 84, median = 126).

Adjusted p value cutoff < 0.01 (BH for multiple testing correction). The first and third quartiles, as well as themedian (thick line), are shownwith boxplots; whiskers

extend to the most extreme data point that is no more than 1.53 the interquartile range from the box.

(G) Enrichment analysis (hypergeometric test) was performed on the KOs that induced aneuploidy using the GO slim gene sets (BP, MF, and CC).37 Significant

terms (adjusted p value < 0.01) are shown and ranked by significance (decreasing from top to bottom).

(H) Number of aneuploid KOs with and without paralogs. The aneuploid strains with paralogs are grouped into strains where the paralog is on the aneuploid

chromosome (orange) and strains where the paralog is not on the aneuploid chromosome (green). Paralogs from whole-genome duplications (ohnologs) were

considered and their annotations were downloaded from the Yeast Gene Order Browser35 (see key resources table).

ll
OPEN ACCESSResource



Figure S4. The interdependency of differential protein expression with translation rate and turnover, related to Figure 4

(A) Half-life-dependent protein-abundance changes for the top 6 features (KOs) selected by the elastic net model (fun30D, sds24D, ino1D, ncs2D, ybr196c-aD,

dur12D). Protein half-lives57 (log2 transformed) are plotted against centered log2 intensities. Long and short half-lives are defined as being above 3rd quartile and

below 1st quartile, respectively.

(B) Unspecific half-life-dependent protein-abundance changes are observed across all growth rates and cell sizes. Correlation coefficients (Pearson) were

calculated for all strainwise relationships between protein expression changes and half-lives. Thus, high correlation coefficients indicate a tendency to upregulate

long-lived and downregulate short-lived proteins. Correlation coefficients are plotted against the growth rate (normalized), and strains with phenotypes char-

acterized by decreased and increased cell size37 are colored.

(C) The directionality of differential expression is given as ratios (number of upregulations/number of downregulations) for each protein and is plotted against its

protein half-life (y axis). Protein half-lives were log10 transformed.

(D) Proteins with higher ribosome occupancies aremore often differentially abundant. Low and high ribosome occupancies are defined as proteins with ribosome

occupancies shorter or longer as the median of all considered ribosome occupancies. Ribosome occupancies were taken from a reference dataset and were

determined by ribosomal profiling.56 Differential abundance is given as% changed across all measured KOs (differential abundance of a particular protein across

the KO/total number of KO 3 100).

(E) Protein abundances (intensities) are plotted as a function of half-lives (in h). x axis is log10 transformed. Little correlation was observed with r = 0.09 (Pearson

correlation coefficient) and p < 0.01.

The first and third quartiles, as well as the median (thick line), are shown with boxplots; whiskers extend to the most extreme data point that is no more than 1.53

the interquartile range from the box.
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Figure S5. Annotating the genome using functional proteomics, related to Figure 6

(A) Differential expression for KOs involved in RNA degradation. KO strains were grouped together according to the KEGG term ‘‘RNA degradation’’69,70 (CAF120,

PAP2, AIR1, PAT1, SKG3, AIR2, EDC3, PAN3,MPP6, CAF40, TRF5, SKI7, DCS1, CAF16, NOT3, SKI2, SKI3, CCR4, POP2, RRP6, XRN1, DHH1, LSM7, LSM6,

LSM1, LRP1,MOT2) and compared to WT samples using the limma package.107 BH was used for multiple testing.62 Proteasome proteins are colored. Log2 fold

changes are shown on the x axis; adjusted p values (�log10 transformed) on the y axis.

(B) RNA-associated KOs69,70 (horizontally) and significantly changed proteasomal proteins (vertically). Protein intensities were centered and log2 transformed.

(C) Many yeast genes are understudied. The number of publications linked to yeast genes according to the Saccharomyces Genome Database37 is shown with

boxplots. YeastMine currently classifies 722 proteins as ‘‘uncharacterized.’’ A median of 5 publications can be mapped to these, compared to a median of

42 publications for the remaining genes.

(D) Same data as in (C), but genes were divided based on the annotation score assigned to each gene by UniProt. The 2,913 best-annotated yeast genes (5 out

of 5) have a median of 103 publications each, whereas the 468 worst-characterized genes (1 out of 5) have a median of 4 publications.

(E) Poorly characterized genes/proteins captured in our dataset and with our functional annotation strategies. The total number of poorly characterized genes/

proteins (UniProt annotation score 1 or 2 or defined as uncharacterized by YeastMine), the number of poorly characterized genes/proteins measured in our

dataset and the number of poorly characterized genes/proteins that have at least one functional term assigned by one of the presented strategies (PP, RPP, PS,

PC) (STAR Methods).

(F) Gene deletions and high-throughput proteomes capture complementary sets of proteins. Compared to the whole yeast genome, genes covered by mass

spectrometry are biased toward more-abundant proteins (Fi) and essential genes (Fii), whereas genes deleted in the KO library are more likely covering low

abundant and non-essential proteins that contain also more uncharacterized genes (Fiii). In combination, gene deletions and high-throughput proteomics cover

5,262 unique genes, which is 79% of the yeast genome annotation, andmore than can be assessed with either technique in separation. 1,138 genes are covered

by both KO and protein quantification (Fiv). Note that the number of essential genes covered by KOs is very small, but not zero. This is because essential genes

were defined here as those with an ‘‘inviable’’ phenotype in the SaccharomycesGenome Database (STARMethods), which comprises a few genes that are viable

under the conditions used in this study.

(G) UMAPs grouping KO strains by profile similarity (left) and proteins by covariation (right). Genes/proteins that are part of the citrate cycle (TCA cycle) according

to the KEGG classification69,70 are labeled.

(H) Proteome profile of pyc1D shown as volcano plot. Log2 fold-changes are shown on the x axes;�log10-adjusted p values are shown on the y axes. Differential

expression was calculated using the limma R package107 (STAR Methods).

(I) Reverse proteome profile of Pyc1 shown as volcano plot. Log2 fold-changes are shown on the x axes; �log10-adjusted p values are shown on the y axes.

Differential expression was calculated using the limma R package107 (STAR Methods).

(J) Functional annotations capture known interactions within the TCA cycle. KEGG enrichment analysis was performed for genes/proteins within the TCA cycle

and significant associations with other proteins/genes of the same pathway (TCA cycle) are shown as black squares (p value < 0.01). For PP analysis, the

enrichment was performed on the differentially expressed proteins in each strain and for RPP the KOs in which the respective protein was differentially expressed.

For PS, PC, genetic interaction scores (absolute values) and profile similarities we considered the highest-scoring 1% of associations in the network. Genetic

interactions scores and profiles were taken from Costanzo et al.78
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Figure S6. Feature selection and optimization of proteome profile similarity and protein covariation assessment, related to STAR Methods

(A) A common strategy for feature selection in data science is the use of random forests (RFs), which offer a straightforward way to assess the importance of each

feature for a regression model. We measured the growth rates of the KO strains in three growth media (YPD, SM, SC). We then trained RF regression models to

predict these KO strain growth rates from the abundances of the 1,850 quantified proteins. The importance of each feature (protein) for these predictions was

extracted from the RF models.

(B) We performed precision-recall (PR) analyses to test if proteins that are important for growth-rate prediction are also useful to identify functionally related KO

strains. Indeed, using the 185 proteins with the highest feature importance outperformed the use of all 1,850 proteins. Notably, performancewas further improved

by combining feature importances across the three growth media, which was achieved by ranking proteins based on the minimal scaled importance they

achieved in any RF model. This PR analysis used the STRING gold standard.

(C) To determine the optimal number of features (proteins) to select in this way, proteins were ranked by feature importance (across all three growth media) and a

series of PR analyses was performed. The plot shows the areas under the PR curves (AUPRCs), using either STRING or COMPLEAT gold standards. Performance

increases asmore proteins are added, peaks around 185 proteins (10%of the 1,850 proteins used for this analysis), and then decreases again. This suggests that

to compare proteome profile similarities of KO strains it is best to consider only the 10% of proteins with the highest feature importance.

(D) Various correlation and distance metrics were compared by PR analysis for how well they identify profile similarity across the�5,000 yeast KO strains, on the

basis of the 185 pre-selected proteins. Optimal performance is observed for two types of robust correlation metrics, Spearman’s correlation and biweight

midcorrelation, with the latter becoming our preferred choice as it can be calculated more efficiently.

(E) A topological overlap measure (TOM) further improved the precision with which KO strains of functionally related genes can be linked, as shown by PR

analyses using the STRING (left) or COMPLEAT (right) gold standards. Feature selection improves performance by 18.4%–19.2% compared to correlating all

1,850 quantified proteins. Taking into account the topology of the resulting correlation network helps to remove false-positive links and improves performance by

an additional 8.3%–9.2%. These TOM-modified biweight midcorrelations of the 185 selected proteins constitute our proteome profile similarity scores.

(F) PR curves showing that focusing the analysis on the 2,290 ‘‘responsive’’ KO strains strongly improves performance. This means the proteome profiles of

responsive KOs can be compared more accurately and will therefore lead to better gene-function predictions. A responsive strain is defined here as having more

differentially expressed proteins than the median strain.

(G) Feature selection also improved protein covariation analysis. In this case, KOs were ranked by ‘‘responsiveness,’’ defined as the number of differentially

expressed proteins. PR analyses were performed starting with the 100 most responsive strains and gradually including more strains up until using all 4,675 KO

strains that had been included in the limma analysis. Based on the performance peak observed in this way, we proceeded using the 10% (n = 467) most

responsive strains to measure protein covariation.

(H) Comparison of metrics capturing protein covariation across the 467 pre-selected KO strains. Spearman’s correlation and biweight midcorrelation marginally

outperformed other metrics, with the latter again becoming our preferred choice.

(I) PR analyses using STRING and COMPLEAT gold standards, respectively, showing that feature selection improves the detection of functionally related proteins

by 16.4%–27% (compared to correlating all�5,000 yeast strains). Note that in contrast to the proteome-profile-similarity network of KOs, taking into account the

topology of the protein covariation network did not improve performance further and was therefore omitted. Consequently, the biweight midcorrelations across

the 476 selected KO strains constitute our protein covariation scores.
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(legend on next page)
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Figure S7. Proteome profile similarity and protein covariation are complementary to each other and to previously known functional asso-

ciations, related to STAR Methods

(A) Breakdown of the highest-scoring 1% of associations across both approaches. These cover 1,284 KOs and 1,396 proteins, respectively.

(B) Biweight midcorrelation (bicor) coefficients of gene pairs that were covered by proteome profile similarity of KO strains and by protein covariation are plotted

against each other. There is no common trend and the top 1% associated pairs by each approach overlap only marginally. This shows that the two approaches

capture a different set of functional associations among the same set of genes.

(C) Top 1% of associations were mapped to known interactions in BioGRID, showing that pairs detected by KO profile similarity are more likely to have been

previously detected as genetic rather than physical interaction. Covarying proteins, on the other hand, are covered better by previously known physical

interactions.

(D) The same associations mapped to known functional associations in STRING and broken down by category. Covarying proteins are most similar to (mRNA)

co-expression evidence in STRING, whereas proteome profile similarity of KOs best reflects associations found by text mining and experimental assays.

(E) Associations were divided into those involving non-essential and essential genes (rows) and those producing positive and negative genetic interactions

(columns). Precision-recall (PR) curves were calculated using the STRING gold standard and the areas under the PR curves (AUPRCs) are shown in the barplot

insets. These plots show that proteome profile similarities perform better for positive than negative genetic interactions, and are therefore highly complementary

to genetic interaction scores. Protein covariation shows no clear bias for essential vs non-essential genes or for positive vs negative genetic interactions (AUPRC

always �0.4). Genetic interactions scores and profiles were taken from Costanzo et al.78
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